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Abstract

Resource pooling improves system efficiency drastically in large stochastic systems, but its
effective implementation in decentralized systems remains relatively underexplored. This paper
studies how to incentivize resource pooling when agents are self-interested, and their states
are private information. Our primary motivation is applications in the design of decentralized
computing markets, among others. We study a standard multi-server queueing model where
each server is associated with an M/M/1 queue and aims to minimize its time-average job
holding and processing costs. We design a simple token-based mechanism where servers can
earn tokens by offering help and spend tokens to request help from other servers, all in their
self-interest. The mechanism induces a complex game among servers. We employ the fluid mean-
field equilibrium (FMFE) concept to analyze the system, combining mean-field approximation
with fluid relaxation. This framework enables us to derive a closed-form characterization of
servers’ FMFE strategies. We show that these FMFE strategies approximate well the servers’
rational behavior. Leveraging this framework, we design the key element of the mechanism
and present our main results: As the number of servers increases, the proposed mechanism
incentivizes complete resource pooling—i.e., the system dynamics and performance under our
mechanism match those under centralized control. We also extend our mechanism to settings
with heterogeneous servers, and we show that our mechanism obtains near-optimal performance.

Subject classifications: Resource pooling, decentralized application, fluid mean-field equilibrium,
dynamic games.



1 Introduction

Resource pooling is a fundamental concept in operations management and lies at the heart of

broad applications. For example, data centers consolidate numerous devices to efficiently process

large volumes of tasks. Meanwhile, modern healthcare systems commonly embrace multi-hospital

networks to share specialized medical equipment and healthcare professionals within the network.

The increased efficiency from resource pooling stems from the ability to direct idle servers to process

jobs from loaded ones. This advantage is exemplified by a classic scenario in which an M/M/N

queueing system significantly reduces waiting times compared to a collection of N independent

M/M/1 queues with the same total arrival rate.

In this paper, we study a decentralized setting and consider the problem of incentivizing resource

pooling among N strategic servers that operate in self-interest. Specifically, each server receives

independent streams of jobs that arrive at a rate of λ < 1, and can process jobs at a rate normalized

to be one. Both serving and storing jobs incur costs. Serving a job costs c ≥ 0, while a job waiting

for service incurs a holding cost of one per unit of time. A server’s objective is to minimize its

long-run average job holding and processing costs.

Such a problem is motivated by the growing popularity of decentralized applications (or dApps).

These applications operate on decentralized networks, normally blockchains, without the control

of a central authority. We focus on the particular dApp of decentralized computing markets,

exemplified by platforms such as Golem Network (GolemNetwork 2016), iExec (iExec 2017), and

Akash Network (AkashNetwork 2018), among others.1 These blockchain-based dApps endeavor

to facilitate self-interested users to exchange computing resources. Specifically, users can rent out

unused computing resources or request resources from others, all in their self-interest and guided

by the market’s design.2

In the absence of a central planner and when servers are strategic, it remains uncertain whether

the same level of resource pooling can be attained. Particularly, a server may act as a free rider

anticipating that it will be helped later, and an idle server may lack the incentive to help others due

to the presence of job processing costs. Moreover, the decentralized applications we consider present

an additional challenge to the mechanism design, which is limited information. If the servers had

complete information about one another (particularly the ability to monitor the actions and job

1The market capitalizations of Golem Network, iExec, and Akash Network are approximately 170 million, 75
million, and 310 million US dollars, respectively, in August 2023.

2We assume homogeneous jobs and servers in our base model as a first step toward designing decentralized
computing markets. In Section 7, we extend our mechanism and analysis to the setting with heterogeneous servers.
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counts of all other servers), the mechanism would be straightforward because servers can punish

deviation from resource pooling. In more detail, if a server with no pending job refuses to help

others even once, that server will be forever banned from participating in the system by all the

other servers, thereby losing all potential future benefits of cooperation. Therefore, no server has

an incentive to deviate from resource pooling, leading to an equilibrium where complete resource

pooling is attained.

However, the assumption of complete information is only realistic when there are only a few

servers. In contrast, in decentralized computing markets (our motivating example), the number

of participants is usually large. Furthermore, in blockchain-based applications, participants are

typically anonymous, and their states and actions are obscured from others, intensifying the flaw

of complete information assumption. As a result, we consider a setting where servers possess

only limited information about one another, specifically: (i) servers’ states and actions are hidden

from others, and (ii) a server may not know the exact total of servers, except knowing that it

is relatively large. Such a limited information setting renders punishing deviation unattainable;

thus, an alternative mechanism must be developed. Furthermore, it is a priori unclear whether

complete resource pooling—i.e., the same extent of resource pooling under centralized control—can

be (almost) achieved in this limited setting. This raises the following natural research question:

Can we design a simple mechanism that incentivizes (almost) complete resource pooling in a

limited information setting (such as decentralized computing markets on blockchains)?

Remark 1.1 (Other Applications). In addition to the decentralized computing markets, many other

applications also involve incentivizing resource pooling in a limited information setting. For exam-

ple, consider a regional healthcare system that seeks to incentivize cooperation among hospitals,

so that a hospital can outsource patients to a nearby one during periods of over-occupation. No-

tably, these hospitals may belong to different entities (therefore will strategize), and observing the

congestion level of a hospital externally can be challenging.

1.1 Our Contributions

As our main contribution, we provide an affirmative answer to the above question by introducing a

simple token-based mechanism. Through careful design of the mechanism, we show that complete

resource pooling can be achieved when the number of servers N is large. Specifically, within our

mechanism, it is each server’s best strategy to (i) process a job from its queue if one is present

and help others otherwise, and (ii) request help whenever a job arrives (and the server has tokens).
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Consequently, both the system dynamics and performance match those under centralized control.

In our token-based mechanism, a server can request help from others for processing its jobs at

the cost of one token per requested job at any time. Meanwhile, a server can allocate its next unit

of available computing power to help others and earn a token with a pre-determined probability

ϕ ∈ (0, 1). Decisions regarding the request and provision of help are made by each server based on

their own interest. The mechanism matches servers providing help to those requesting help in a

first-come-first-serve order by managing a (virtual) shared pool. Since servers interact through the

shared pool, their dynamics are only weakly coupled, which simplifies the analysis of our mechanism.

Further details on our mechanism are provided in Section 2.2.1.

The mechanism introduces a complex stochastic, incomplete-information, dynamic game among

servers that is challenging to analyze. To address this, we adopt the equilibrium notion of fluid

mean-field equilibrium (FMFE), which is tractable and provides a good approximation to the

servers’ strategic behaviors in our mechanism. Specifically, our approximation combines the mean-

field approximation with a fluid relaxation in a similar spirit to Balseiro et al. (2015). First, we

consider a mean-field approximation as a large market approximation. When the number of servers

is large, there is little value in tracking the dynamics of all the other servers (even if a server can do

so). Instead, it is plausible to assume that the fluctuations of servers’ states average out, and as a

result, the empirical distribution of the shared pool remains roughly constant over time. The mean-

field approximation assumes that servers optimize only with respect to long-run average estimates

of the congestion level of the shared pool. Second, we consider a fluid relaxation to handle the

dynamics of servers’ tokens. The fluid relaxation requires that the tokens’ flow balance constraint

holds only in expectation; such relaxation is tight when a server can possess many tokens, which is

the case in our mechanism.

The two approximations simplify a server’s problem significantly, enabling us to derive a closed-

form characterization of a server’s best response in FMFE. We show that the FMFE best-response

strategy is a threshold policy in a server’s queue length. Specifically, a server requests help only

when its queue length exceeds a certain threshold, which depends on the token-earning probability

ϕ and the endogenous waiting time in the shared pool, and a server offers help only when its

queue is empty. Moreover, we show that FMFE provides a good approximation to the rational

behavior of the servers as the number of servers N grows large, justifying our approximation

methodology. Specifically, for any value of ϕ, it constitutes an approximate Nash equilibrium when

all the servers follow the FMFE strategies. In other words, the benefit from unilaterally deviating

to other strategies becomes negligible as the number of servers grows large.
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Leveraging the FMFE framework, we determine the optimal value of the token-earning proba-

bility ϕ, which is the key element of our mechanism. We show that the optimal choice of ϕ equals

λ, the job arrival rate at each server.3 Moreover, with this value, complete resource pooling is

an FMFE under our mechanism when the number of servers is large; thus, the resulting system

dynamics and performance match those under centralized control.

Moreover, we demonstrate via numerical results that complete resource pooling is an approxi-

mate equilibrium when the token-earning probability ϕ equals λ even in small markets with only

a few servers, providing further practical support to our proposed mechanism. In small markets, a

server may have an incentive to continually infer the congestion level of the shared pool, so as to

request or offer help only when the congestion is minimal. Nevertheless, we show that the benefit

of doing so is low even when there are only very few servers, and even when the deviating server

can monitor the congestion level of the shared pool completely.

Finally, we extend our mechanism and performance analysis to a general setting with heteroge-

neous servers (but still require that jobs are stochastically identical). Our former analyses readily

indicate that by setting the token-earning probability ϕ to be the largest utilization factor ρi among

servers,4 the total number of jobs in the system is at most a constant times the total number of jobs

in the centralized setting when the number of servers is large and under mild regularity conditions

on the problem primitives. Thus, the complete resource pooling is almost obtained.

The rest of the paper is organized as follows. Section 1.2 reviews some related work. We

formulate the problem in Section 2. In Section 3, we introduce the FMFE of the problem. Section 4

characterizes the FMFE strategies in closed form. Section 5 presents the main results of our token-

based mechanism. Specifically, we show that complete resource pooling is achieved under a proper

choice of the token-earn probability ϕ and when the number of servers is large. Section 6 justifies our

approximation methodology by showing that all the servers adopting the FMFE strategies forms

an approximate Nash equilibrium. Furthermore, in Section 6.3, we show via numerical results

that complete resource pooling is an approximate equilibrium under our mechanism, even for small

markets with only a few servers. Section 7 extends our mechanism and performance analysis to a

more general setting with heterogeneous servers. We conclude in Section 8.

3Recall that we normalize the servers’ processing rates to be one.
4Specifically, ϕ = maxi∈[N ] ρi with ρi = λi/µi, where λi and µi are the job arrival and job processing rates at

server i.
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1.2 Related Literature

Power of Resource Pooling Resource pooling improves system efficiency in various applications,

e.g., inventory pooling (Eppen 1979), manufacturing flexibility (Tsitsiklis and Xu 2017, Shi et al.

2019), retail operations (Elmachtoub et al. 2015), and transportation (Balseiro et al. 2021). Tsit-

siklis and Xu (2013) show that even a little resource pooling can significantly reduce congestion in

large systems. These work primarily focus on centralized settings. In contrast, we design a simple

mechanism to incentivize complete resource pooling in a decentralized setting.

Decentralized Setting with Two Servers Hu and Caldentey (2023) examine a model similar to

ours but focus on two (heterogeneous) servers. In their model, jobs that cannot be served upon

arrival abandon the system. They analyze the equilibrium by assuming that both servers adopt

a family of trading-favors strategies. Characterizing an equilibrium with just two servers proves

challenging. In contrast, we consider a scenario with many servers. We use the approximation

notion of FMFE to provide a crisp characterization of servers’ strategic behaviors in our mechanism.

We demonstrate that the performance of our mechanism approaches that under centralized control

as the number of servers increases.

Mean-Field Equilibrium A number of recent papers have utilized mean-field equilibrium to study

complex, large-scale operational problems (e.g., Iyer et al. 2014, Balseiro et al. 2015, Kanoria

and Saban 2021, Arnosti et al. 2021). The mean-field equilibrium relaxes the informational re-

quirements of agents, allowing them to know only the aggregate description of the system (in our

case, the steady state of the shared pool), which makes it tractable and appealing, and aligns

well with our limited information setup. As we show in Section 6 (and similarly demonstrated in

the aforementioned papers), due to the averaging effects, mean-field equilibrium provides accurate

approximations of servers’ strategic behaviors as the number of servers increases.

The specific fluid mean-field equilibrium (FMFE) we consider incorporates a second fluid re-

laxation to better handle each server’s stochastic optimization problem. This is similar to Balseiro

et al. (2015), but we address very different problems. Specifically, Balseiro et al. (2015) focus on

repeated auctions with budget-constrained bidders. The fluid relaxation in their FMFE allows the

bidders to satisfy the budget constraint only in expectation. The resultant optimal bidding strategy

takes a simple form: a bidder shades her value by a constant factor. In contrast, we investigate a

decentralized queueing system. Our fluid relaxation allows servers to possess a negative number of

tokens, but the in-flow and out-flow of tokens need to be equal in expectation; correspondingly, a
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server’s best response is a threshold policy in its queue length.

Scrip System Several papers have examined scrip (or token) systems in a different model, e.g.,

Kash et al. (2007), Kash et al. (2015), Johnson et al. (2014), and Bo et al. (2018). In their model,

a random player requests service in each period, and a mechanism specifies a service provider from

those willing to offer help. Successful service provision occurs if the requester has at least one scrip,

in which case, one scrip transfers from the requester to the provider.

Our work considers a distinct queueing model to investigate resource pooling in a decentralized

setting, which requires a significantly different analysis. Beyond that, Kash et al. (2007) and Kash

et al. (2015) analyze a random provider selection rule, which is suboptimal in the centralized setting.

Johnson et al. (2014) and Bo et al. (2018) examine the minimum scrip selection rule (i.e., selecting

the player with the least number of scrips to provide help), which is optimal in the centralized

setting. However, the minimum scrip selection rule requires publicly accessible information about

each player’s scrip quantity, making it hard to implement in a limited information setup as we

consider.

Further Related Work Other researchers have investigated server cooperation from a coopera-

tive game perspective, e.g., Anily and Haviv (2010), Anily and Haviv (2014), and Karsten et al.

(2015). These work consider a cooperative game among servers and investigate how to allocate

the system’s total costs among servers to sustain cooperation (i.e., finding the core of the game).

The implementation still requires that servers in a group possess complete information about one

another, to ensure that every server in the group makes maximum effort to serve incoming jobs.

Finally, our work complements nicely the literature on supermarket games and their variations

(e.g., Xu and Hajek 2013 and Yang et al. 2019). In their problem, customers, rather than servers,

are the strategic agents. Each customer selects the number of queues to sample upon arrival and

joins the shortest queue from the sample to minimize the total waiting and sampling costs; this

introduces a game among customers. Many of these work also adopt the mean-field equilibrium for

a tractable analysis.

1.3 Notation and Terminology

We let N denote the set of nonnegative integers and N+ the set of strictly positive integers. For any

two integers a, b ∈ N with a ≤ b, we let [a : b] =
{
a, a+1, . . . , b− 1, b

}
denote a sequence of integers

starting from a and ending with b and we denote [n] = [1 : n] for any n ∈ N+. For any nonnegative
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real number x ∈ R+, we let ⌊x⌋ ∈ N denote the floor of x, which is the greatest integer less than

or equal to x; and we let ⌈x⌉ ∈ N denote the ceiling of x, which is the least integer greater than or

equal to x. For any real number x ∈ R, we let (x)+ ≜ max{x, 0} denote the maximum of x and 0.

2 Problem Formulation

We consider N servers that operate in their self-interest in continuous time. Jobs arrive at each

server independently following a Poisson process with a rate of λ < 1. Each server manages a queue

to store incoming jobs waiting to be processed. To model the servers’ job processing processes,

we adopt a Poisson clock model following Tsitsiklis and Xu (2013) and Spencer et al. (2014) to

simplify our analysis. Specifically, each server receives a stream of “capacity units” that follows

an independent Poisson process, with a rate normalized to one.5 When a capacity unit arrives at

server i ∈ [N ], the server can either serve a job from its queue or other places by incurring a cost

c ≥ 0, or waste the capacity unit at zero cost. Served jobs leave the system immediately.

Both serving and storing (or holding) jobs incur costs. Serving a job costs c ≥ 0, and each job

waiting for processing incurs a cost of one per unit of time. Each server’s objective is to minimize its

expected time-average total cost—job processing cost plus holding cost—over an infinite horizon.

2.1 System Performance under Centralized Control

We first consider the centralized setting as a benchmark. In this setting, a central planner has

complete control over the servers and minimizes the total cost in the system; since servers are

stochastically identical, this is equivalent to minimizing the expected time-average total cost per

server. To achieve this goal, the planner would direct an idle server to process jobs from other

queues (e.g., a server with the longest queue). The dynamics of the total number of jobs in the

system is an M/M/1 queue under the Poisson clock model, with the job arrival and processing rates

being Nλ and N , respectively. Consequently, the expected total number of jobs in the stationary

distribution is a constant of λ
1−λ . Therefore, the time-average cost per server is

Vc(N) ≜
λ

(1− λ)N
+ cλ ,

5Although Tsitsiklis and Xu (2013) and Spencer et al. (2014) refer to these capacity units as “service tokens,” we
use a different name to prevent any possible confusion with the artificial currency tokens that we will introduce later
as part of our mechanism.
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where λ
(1−λ)N is the expected number of jobs in a server’s queue and cλ is a server’s time-average

job processing cost.6 This improves upon

V1 ≜
λ

1− λ
+ cλ ,

the time-average cost of a server when it operates independently; the improvement is significant,

particularly when there is a large number of servers.

2.2 Mechanism for Decentralized Setting

In the absence of a central planner and when servers are strategic, a server may act as a free rider if

it knows it will be helped later. In addition, an idle server may lack the incentive to help others due

to the presence of job processing costs. Therefore, it remains uncertain whether we can design a

mechanism to attain the same time-average cost Vc(N) as in the centralized setting. In this section,

we develop a simple token-based mechanism, and we show later that such a mechanism encourages

server cooperation and ensures the first-best time-average cost Vc(N) is achieved in large systems.

Limited Information Setup As motivated in Section 1, we consider a setting where each server

possesses only limited information on the other servers. In particular, each server is unaware of the

other servers’ states or actions, and a server does not require precise knowledge of the total number

of servers N , except knowing that it is relatively large. This renders punishing deviation from

resource pooling unattainable. However, as we shall demonstrate, a simple token-based mechanism

achieves complete resource pooling in this restrictive information setting. We describe our token-

based mechanism in Section 2.2.1 and analyze its performance in the rest of the paper.

2.2.1 Incentivizing Resource Pooling via Artificial Currency Tokens

In this section, we describe a token-based mechanism that incentivizes resource pooling.

An Overview of the Mechanism In our mechanism, each strategic server has the autonomy to

make its own decisions about requesting help from or providing help to other servers, in addition

to processing its jobs. The requests and provisions of help are matched through a shared pool in a

first-come-first-serve (FCFS) order. To mitigate free riding and promote cooperation, we introduce

6By the “Poisson Arrivals See Time Averages (PASTA)” property, the long-run proportion of capacity units who,
upon arrival, find a job in the system equals λ. Thus, the time-average job processing cost of a server equals cλ.
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a token system. Specifically, servers possess artificial currency tokens (or scrips). Requesting help

requires one token, whereas a server can earn tokens by offering help.

In the following, we let Qi(t) denote the queue length (i.e., number of jobs) of server i ∈ [N ]

and Q0(t) the queue length of the shared pool at time t.

Servers’ Actions Each server makes strategic decisions about requesting help from or providing

help to other servers. The decisions of a server are as follows.

First, every server i ∈ [N ] can request help from other servers for processing its jobs at any

time t. We let Ri(t) ∈
[
0 :Qi(t)

]
denote the number of jobs the server requests help with at time t.

The mechanism enforces that requests are irrevocable. Once requested, the Ri(t) jobs are relocated

from the queue of server i to the shared pool (i.e., Qi(t) decreases by Ri(t), and Q0(t) increases by

Ri(t)). The server is informed once a requested job gets served.

On the other hand, whenever a capacity unit arrives at server i at time t, the server must make

an immediate decision Yi(t) ∈ {0, 1,∅} to allocate the capacity unit. In particular,

• Yi(t) = 1 indicates that the server would like to provide help to others. By doing so, the server

contributes its capacity unit to the shared pool without recall. If the shared pool contains a

job (i.e., Q0(t) ≥ 1), the job that is waiting longest in the pool gets served (hence, an FCFS

rule is used), and it incurs a cost c for the server to process the job. Otherwise, if the shared

pool is empty, the capacity unit is wasted, and it incurs no job processing cost to the server.

• Yi(t) = 0 indicates that the server uses the capacity unit to serve a job from its queue,

incurring a job processing cost of c.

• Yi(t) = ∅ indicates that the server would be idle and waste the capacity unit with no cost.

The Shared Pool The mechanism does not reveal the queue length of the shared pool to servers.

However, servers can partially infer the congestion level of the shared pool in two ways. First,

when a server offers help, the server knows whether the shared pool is empty because a non-empty

shared pool incurs a processing cost of c, whereas an empty shared pool does not. Secondly, servers

receive notifications when a job relocated to the shared pool gets served; this allows them to infer

information about the shared pool based on the status of relocated jobs.
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The Token System Finally, we introduce a token system to incentivize server cooperation and

mitigate free-riding. Specifically, each server is initially endowed with a certain number of tokens,7

which it can use to pay for help or receive as a reward for providing help. The protocol for paying

and earning tokens is as follows:

• When a server requests help (i.e., Ri(t) ≥ 1), it costs one token per requested job.

• (The Mining Process) A server that offers help (i.e., Yi(t) = 1) is rewarded with one token

with a pre-determined probability ϕ ∈ (0, 1) independent of whether the pool is empty or not.

By the design of the mechanism, acquiring a token is independent of the success of helping

others (which corresponds to serving a job from the shared pool). Such a design simplifies the

analysis of our mechanism, because the dynamics of servers will be independent if every server’s

strategy hinges only on its individual state. Note that the total number of tokens in the system is

not constant by the design of the mining process. The value of the token-earning probability ϕ is

pivotal to our mechanism, and we determine its optimal value in Section 5.

Finally, we denote by Si(t) the number of tokens held by server i at time t. We impose that

0 ≤ Si(t) ≤ C for some integer C ∈ N+ and for all i ∈ [N ] and t ≥ 0, i.e., a server’s token count is

nonnegative and bounded from above by a constant C. We specify the value of C in Section 6.

System Dynamics and Server’s Problem For each server i ∈ [N ], we let Nλ
i (t) and N c

i (t) denote

the number of jobs and capacity units that arrive by the end of time t, and τ cij the arrival time

of the j-th capacity unit. Additionally, we let NR
i (t) denote the number of jobs server i requests

help for by the end of time t, and τR
ij and wij the time that server i requests help for the j-th job

and the waiting time of the job in the shared pool before being served. The evolution of the queue

lengths and token counts can be expressed as follows:

Qi(t) = Qi(0) +Nλ
i (t)−NR

i (t)−
∑

j≤Nc
i (t)

1
[
Yi(τ

c
ij) = 0

]
, ∀ i ∈ [N ], t ≥ 0 ,

Q0(t) = Q0(0) +
∑
i∈[N ]

NR
i (t)−

∑
i∈[N ]

∑
j≤Nc

i (t)

1
[
Yi(τ

c
ij) = 1

]
· 1
[
Q0(τ

c
ij) ≥ 1

]
, ∀ t ≥ 0 ,

Si(t) = Si(0)−NR
i (t) +

∑
j≤Nc

i (t)

ζij · 1
[
Yi(τ

c
ij) = 1

]
, ∀ i ∈ [N ], t ≥ 0 ,

Qi(t) ≥ 0, ∀ i ∈ [0 :N ], t ≥ 0, 0 ≤ Si(t) ≤ C, ∀ i ∈ [N ], t ≥ 0 ,

7The specific value is not essential as one considers the time-average-cost objective.
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where ζij are independent binary variables with a mean value of ϕ, which indicate if server i is

awarded a token if it offers help at time τ cij .

Finally, we can express the cumulative cost of server i until time t as follows,

Vi(t) =

∫ t

0
Qi(s) ds +

∑
j≤NR

i (t)

min
{
wij , t− τR

ij

}
+ c

∑
j≤Nc

i (t)

{
1
[
Yi(τ

c
ij) = 0

]
+ 1

[
Yi(τ

c
ij) = 1

]
· 1
[
Q0(τ

c
ij) ≥ 1

]}

where the first two terms represent the waiting costs for jobs in the queue and those relocated to

the shared pool, and the third term accounts for the cost of processing jobs from the queue and the

shared pool. Each server’s objective is to minimize its time-average cost lim supt→∞ E[Vi(t)]/t in

the dynamic game induced by the mechanism. We remark that waiting times {wij} in the shared

pool depend on the strategies of all servers.

3 Equilibrium of Stochastic Game

The mechanism described in Section 2.2.1 gives rise to a complex stochastic, incomplete-information,

dynamic game among servers. The perfect Bayesian equilibrium (PBE) is a widely used solution

concept for dynamic games with incomplete information. In essence, each server is associated with

a strategy and a belief system in PBE. A strategy is a function that maps a server’s current state

and past observations to decisions on requesting/providing help or serving its jobs. Additionally,

each server must form beliefs about the states of the shared pool and all other servers. A set of

strategies and belief systems forms a PBE if the following holds. First, given a server’s beliefs and

the strategies of all other servers, the server’s strategy should minimize her expected continuation

cost. Secondly, the beliefs held by each server must be consistent with the servers’ equilibrium

strategies and satisfy Bayes’ rule whenever possible.

Although PBE has been a standard solution concept for stochastic games, multiple works in

the literature (Weintraub et al. 2008, Iyer et al. 2014, Balseiro et al. 2015, among others) have

highlighted significant obstacles with the PBE approach, mainly when dealing with many players.

First, servers solve a dynamic programming problem to determine the best responses. Since servers

maintain beliefs about the state of all other servers in PBE, the dimension of the optimization

problem grows very quickly as the number of servers increases, making equilibrium strategies quickly

intractable both analytically and computationally. Secondly, as the number of servers increases,
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it becomes hard to believe that servers can, in fact, maintain beliefs on the states of all other

servers, as such a level of sophistication imposes a stringent rationality assumption on the servers.

Given the intricacy of the PBE approach, we instead consider an approximate equilibrium concept,

termed fluid mean-field equilibrium (FMFE), to facilitate the analysis. The FMFE combines the

widely adopted mean-field approximation with a fluid relaxation, as we formally introduce below.

3.1 Mean-Field and Fluid Approximation

When deciding whether to request help, a server would like to estimate the waiting time in the

shared pool if it relocates a job there. Meanwhile, a server considering whether to offer help would

take into account the probability that the shared pool is empty, in which case the server has an op-

portunity to earn a token without incurring a cost for serving a job from the shared pool. However,

when the number of servers is large, it is reasonable to assume that the fluctuations of servers’ states

average out, and their empirical distribution remains roughly constant over time. Consequently,

the distribution of the shared pool’s queue length also remains constant. Furthermore, with a large

number of servers, the impact of an individual server on the shared pool becomes negligible. These

factors motivate us to consider an approximation methodology named mean-field approximation,

in which each of the N servers optimizes its payoff by assuming that the state of the shared pool

is fixed at its long-run average. Specifically, this simplifies a server’s problem in two ways:

1. The expected waiting time of a job in the shared pool becomes a constant, which we denote

by w ≥ 0. The value of w will be determined endogenously by an equilibrium.

2. The probability that the shared pool is non-empty also becomes a constant, whose value is

precisely ϕ, the probability of earning a token when offering help, as we explain in Remark 3.1.

Remark 3.1 (Probability that Shared Pool is Non-Empty when Offering Help). The long-run average

probability that a capacity unit contributing to the shared pool serves a job (which corresponds to

the pool being non-empty at that moment) equals ϕ. To see this, note that it is in each server’s best

interest to equate the rate of earning and spending tokens. A token only holds value when used,

and earning tokens can incur costs; therefore, there is no benefit in accumulating more tokens than

necessary. Moreover, by our mechanism, the rate of spending tokens equals the rate of requesting

help, and the rate of earning tokens is ϕ times the rate of offering help. Therefore, at each server,

the rate of requesting help is ϕ times the rate of offering help. As a result, the rate at which jobs

relocate to the shared pool (which equals the total requesting help rates across servers) is ϕ times
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the rate at which capacity units join the shared pool (which equals the total offering help rates

across servers). Consequently, the probability that a capacity unit contributed to the shared pool

serves a job is precisely ϕ.

Simplification from Mean-Field Approximation Since servers optimize their own objectives hold-

ing the state of the shared pool constant in the mean-field problem, their optimal strategies depend

only on their individual state—i.e., a server’s queue length and the number of tokens a server pos-

sesses; we call such servers oblivious and their strategies oblivious strategies (following Weintraub

et al. 2008). Furthermore, since the state of the shared pool is treated as constant, it is without

loss of optimality to assume that a server requests help only when a job arrives, as we demonstrate

in Lemma 3.1.

Lemma 3.1. In the mean-field problem, it is optimal to request help only when a job arrives, and

only request help for the incoming job.

We prove Lemma 3.1 in Appendix A.1. Therefore, when a job arrives at server i at time t, the

server makes a decision Xi(t) ∈ {0, 1} such that

• Xi(t) = 1 indicates that the server requests help for processing the job (and relocates the job

to the shared pool without recall);

• Xi(t) = 0 indicates that the server adds the job to its queue without requesting help.

The decisions Xi(t) together with Yi(t) defined in Section 2.2.1 constitute a strategy of server i in

the mean-field problem.

We now consider a representative server i in the mean-field problem. Since the server makes

decisions only when either a job or capacity unit arrives, we can consider an equivalent embedded

discrete-time model of the server’s problem, where in each period, either a job or a capacity unit

arrives, with probability λ
1+λ and 1

1+λ , respectively.
8 With some abuse of notation, we instead let t

be the index of the discrete periods. The decisions in period t are: (a) when a new job arrives, we

let Xi(t) = 1 if the server relocates the job to the pool, and Xi(t) = 0 if the server adds the job to

its queue; (b) when a capacity unit arrives, we let Yi(t) = 1 if the server offers help to the shared

pool, Yi(t) = 0 if the server serves a job from its queue, and Yi(t) = ∅ if the server opts to be idle.

8The continuous-time model and its embedded discrete-time model are equivalent because, under any station-
ary policy, the limiting distributions of the continuous-time and discrete-time Markov chains converge to the same
stationary distribution (which may depend on the initial state if the Markov chain has multiple recurrent classes).
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The time-average-cost optimization problem solved by server i in the mean-field approximation,

when the shared pool waiting time is w, can be expressed in (1)

V (w) = min
π∈Π

lim
T→∞

1

T
· E

{
T∑
t=1

(
1

1 + λ
·Qi(t) + ξi1,t · w · 1[Xπ

i (t) = 1]

+ ξi0,t · c ·
(
1[Y π

i (t) = 0] + ϕ · 1[Y π
i (t) = 1]

))}
s.t. Qi(t+ 1) = Qi(t) + ξi1,t · 1{Xπ

i (t) = 0} − ξi0,t · 1{Y π
i (t) = 0}, ∀ t ≥ 1,

Si(t+ 1) = Si(t)− ξi1,t · 1{Xπ
i (t) = 1}+ ζi,t · ξi0,t · 1{Y π

i (t) = 1}, ∀ t ≥ 1,

Qi(t), Si(t) ∈ N, Si(t) ≤ C, ∀ t ≥ 1.

(1)

In (1), we denote by Π the set of all non-anticipative policies (that is, policies that can only depend

on the observed history), ξi1,t and ξi0,t independent binary variables with ξi1,t = 1 (ξi0,t = 1) if a

job (a capacity unit) arrives at server i in period t, and ζi,t independent binary variables with a

mean value of ϕ, which indicate that the server earns a token from offering help in period t. In

the objective function, Qi(t)
1+λ represents the holding cost for jobs in the queue of server i in period

t (note that the length of a period is 1
1+λ in expectation) and ϕ in the last term is the probability

that a capacity unit contributed to the shared pool serves a job and hence incurs a cost of c. The

first and second constraints model the dynamics of the numbers of jobs and tokens, respectively, of

server i. Finally, the average cost of server i in the continuous-time model equals (1 + λ)V (w).

Fluid Relaxation The mean-field problem (1) can be formulated as a two-dimensional stochastic

dynamic program (DP), but is still challenging to solve. To better handle a server’s problem, we

introduce a second level of approximation where we allow the number of tokens to be negative

and go beyond the upper bound C, and we only require that the tokens satisfy the flow balance

constraint, i.e., the expected rates of earning and spending tokens are equal in the long-run average.
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We provide the fluid relaxation of (1) in (2) following the same notation as in (1).

V F(w) = min
π∈Π

lim
T→∞

1

T
· E

{
T∑
t=1

(
1

1 + λ
·Qi(t) + ξi1,t · w · 1[Xπ

i (t) = 1]

+ ξi0,t · c ·
(
1[Y π

i (t) = 0] + ϕ · 1[Y π
i (t) = 1]

))}

s.t. lim
T→∞

1

T

T∑
t=1

P[Xπ
i (t) = 1] = lim

T→∞

1

T

T∑
t=1

ϕ · P[Y π
i (t) = 1] ,

Qi(t+ 1) = Qi(t) + ξi1,t · 1{Xπ
i (t) = 0} − ξi0,t · 1{Y π

i (t) = 0}, ∀ t ≥ 1 ,

Si(t+ 1) = Si(t)− ξi1,t · 1{Xπ
i (t) = 1}+ ζi,t · ξi0,t · 1{Y π

i (t) = 1}, ∀ t ≥ 1 ,

Qi(t) ∈ N, Si(t) ∈ Z, ∀ t ≥ 1 .

(2)

In (2), the first constraint requires that the long-run average rates of earning and spending tokens

are equal. By Remark 3.1, any optimal policy of (1) satisfies this constraint; therefore, (2) is a valid

relaxation to (1). Lemma 3.2 shows that (2) can be formulated as a one-dimensional DP where an

optimal policy depends only on a server’s queue length Qi(t).

Lemma 3.2. The problem (2) can be formulated as a one-dimensional problem where the optimal

policy depends only on the number of jobs in the queue and is independent of the number of tokens

the server possesses.

We prove Lemma 3.2 in Appendix A.2. The mean-field and fluid approximations simplify a

server’s problem substantially. In Section 4.1, we derive a closed-form solution to the fluid mean-

field problem (2), which significantly aids our subsequent analysis. Moreover, in Section 6, we

show that the optimal policies of the fluid mean-field problem provide accurate approximations of

a server’s strategic behavior in the original problem.

3.2 Fluid Mean-Field Equilibrium

We now introduce the concept of fluid mean-field equilibrium (FMFE) based on the fluid mean-field

problem presented in Section 3.1. The FMFE requires a consistency check: the presumed shared

pool waiting time w must arise from the optimal strategies derived from (2). Specifically, a pair

(π,w) that contains a waiting time w and an oblivious strategy π that depends only on a server’s

queue length, constitutes an FMFE if:

1. π is an optimal solution to V F(w);
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2. The long-run average waiting time in the shared pool is w when all the N servers follow the

policy π.

More formally, we define the mapping:

H(w) ≜
{
w′ ∈ R+ : ∃ policy π optimal to V F(w) such that if all servers employ π,

the shared pool waiting time is w′ in the long-run average
}
.

For (π,w) to be an FMFE, we must have w ∈ H(w), i.e., the long-run average waiting time in

the shared pool resulting from the servers’ best-response strategies equals the conjectured waiting

time.

4 Characterization of Fluid Mean-Field Equilibrium

In this section, we characterize FMFE. We first derive a closed-form expression to a server’s best

response in the fluid mean-field problem (2) in Section 4.1. Then, in Section 4.2, we show that under

mild conditions, in all FMFE where servers cooperate, the endogenous waiting time w diminishes

to zero when the number of servers N increases.

4.1 Server’s Best Response in FMFE

In this section, we solve (2) in closed form for any shared pool waiting time w ≥ 0, thus completely

characterizing a server’s best response in FMFE. In particular, we show that a server’s best response

is a threshold policy in its queue length, whereby a server requests help only when its queue length

exceeds a certain threshold and offers help only when its queue is empty.

We first define a function m(z) with m(0) = 0 and

m(z) =
1

1− λ
·
(
z −

z∑
i=1

λi
)
, ∀ z ∈ N .

Proposition 4.1 provides some straightforward properties for the function m(z).

Proposition 4.1. Let ∆m(z) = m(z)−m(z− 1) be the difference of m(z) of two adjacent integers.

Then, we have m(0) = 0, m(1) = 1, and ∆m(z + 1) ≥ ∆m(z) ≥ ∆m(1) = 1 for all z ≥ 1.

We now characterize the optimal policy of (2) for any w ≥ 0 in Lemma 4.2.
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Lemma 4.2 (Optimal Policy of (2)). Let k ∈ N be the unique integer that satisfies ϕ ∈
(
λk+1, λk

]
.

An optimal policy of (2) is as follows.

1. When w < m(k) (Case One):

(a) When a job arrives, route it to the shared pool if q ≥ k and add it to the queue if

q ≤ k − 2. Otherwise, if q = k − 1, route the job to the shared pool with probability

p ≜ ϕ−λk+1

λk−λk+1 ∈ [0, 1] and add it to the queue with probability 1− p = λk−ϕ
λk−λk+1 .

(b) When a capacity unit arrives, serve a job from the queue if q ≥ 1 and offer help to the

shared pool if q = 0.

2. When w ≥ m(k) (Case Two): find an integer z ≥ k such that m(z) ≤ w ≤ m(z + 1).

(a) When a job arrives, route it to the shared pool if q ≥ z and add it to the queue if q ≤ z−1.

(b) When a capacity unit arrives, serve a job from the queue if q ≥ 1. Otherwise, if q = 0,

offer help to the shared pool with probability λz+1/ϕ ∈ [0, 1] (note that ϕ ≥ λk+1 ≥ λz+1)

and be idle with probability 1− λz+1/ϕ.

Moreover, the above policy is the unique optimal policy when w < m(k) or w ∈
(
m(z),m(z + 1)

)
for any z ≥ k. When w = m(z) for some integer z ≥ k, the set of optimal policies is the mixing

of the two (unique) optimal policies when w = m(z)− δ and w = m(z) + δ with small δ (e.g., any

0 < δ < 1).

According to Lemma 4.2, a server’s best response is a threshold policy with respect to its

queue length for any token-earning probability ϕ and (endogenous) shared pool waiting time w.

Particularly, a server requests help only when its queue length exceeds a certain threshold (value k

in case one and value z ≥ k in case two) and offers help only when its queue is empty. The threshold

parameter k =
⌊ lnϕ
lnλ

⌋
in Lemma 4.2 depends only on the value of lnϕ relative of lnλ. When ϕ is

small, it is costly to earn tokens, so a server is conservative in spending tokens; consequently, the

threshold parameter k is decreasing in ϕ. On the other hand, when w increases, the benefit of

requesting help decreases. Notably, when w surpasses m(k), the threshold value z is larger than k

and increases in w. Finally, we remark that the optimal policy is independent of the specific value

of the job processing cost c. This is probably intuitive because an optimal policy serves all jobs

(rather than retaining certain jobs indefinitely) regardless of the value of c.

We prove Lemma 4.2 in Appendix B. The proof relies on an analysis of the dual of problem

(2) where we dualize the flow balance constraint of the tokens. We show strong duality holds and
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demonstrate that the proposed policy is optimal to the dual problem with a specific dual variable;

this implies that the policy is optimal to (2) and the identified dual variable is the optimal dual

variable.

Lemma 4.2 shows that a server’s best response remains the same as the shared pool waiting

time w varies within the interval w ∈ [0,m(k)] or w ∈
[
m(z),m(z+1)

]
for any integer z ≥ k. This

invariance is particularly true for small values of w (e.g., w ≤ m(1) = 1); we describe a server’s

best response in this case in Corollary 4.3, which follows directly from Lemma 4.2.

Corollary 4.3 (Optimal Policy when w ≤ 1). Suppose that the shared pool waiting time w is no

larger than one. An optimal policy of (2) is as follows. Moreover, it is the unique optimal policy

for w < 1.

1. When ϕ < λ (Case One): let k ∈ N be an integer that satisfies ϕ ∈
[
λk+1, λk

]
.9

(a) When a job arrives, route it to the shared pool if q ≥ k and add it to the queue if

q ≤ k − 2. Otherwise, if q = k − 1, route the job to the shared pool with probability

p ≜ ϕ−λk+1

λk−λk+1 ∈ [0, 1] and add it to the queue with probability 1− p = λk−ϕ
λk−λk+1 .

(b) When a capacity unit arrives, serve a job from the queue if q ≥ 1 and offer help to the

shared pool if q = 0.

2. When ϕ ≥ λ (Case Two):

(a) When a job arrives, route it to the shared pool.

(b) When a capacity unit arrives, serve a job from the queue if q ≥ 1. Otherwise, if q = 0,

offer help to the shared pool with probability λ/ϕ ∈ [0, 1] and be idle with probability

1− λ/ϕ.

According to Corollary 4.3, when the shared pool waiting time w is small (e.g., w ≤ 1) and the

mechanism set ϕ equal to λ, it is each server’s best response to implement complete resource pooling:

i.e., (i) serving a job from its queue if one is present and helping others otherwise when a capacity

unit arrives, and (ii) requesting help for all incoming jobs. Therefore, the system’s dynamics are

identical to those under centralized control. In Section 4.2, we show that the endogenous waiting

time w in the shared pool diminishes to zero when the number of servers N increases and servers

cooperate to some extent. Thus, complete resource pooling is an FMFE when there are many

servers and the token-earning probability ϕ equals λ.

9When ϕ = λz+1 for some integer z ≥ 1, letting k be either z or z + 1 yields the same policy.
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4.2 Characterization of FMFE

In this section, we characterize FMFE using the best-response policies of servers derived in Sec-

tion 4.1. First, no cooperation is an FMFE. However, as we show, under mild conditions, as long

as servers cooperate, the waiting time w in the shared pool diminishes to zero as the number of

servers N grows. Therefore, the waiting time w is either infinity (indicating no cooperation) or

nearly zero when N is sufficiently large.

4.2.1 Waiting Time in Shared Pool Diminishing when Servers Cooperate

Suppose that there exists some fixed constant w̄ < ∞ such that all servers believe that the shared

pool waiting time satisfies w ≤ w̄. This effectively rules out the case of w = ∞, which indicates a

complete absence of cooperation, and ensures servers cooperate to some extent. In Proposition 4.4

we show that under this condition, the average waiting time in the shared pool converges to zero

at a rate of O
(
1
N

)
.

Proposition 4.4. Suppose that there exists a fixed constant w̄ < ∞ such that all servers believe that

the waiting time w in the shared pool is no larger than w̄. Then,

1. The expected shared pool queue length in the stationary distribution remains uniformly bounded

from above for any number of servers N , and

2. The waiting time w satisfies w ≤ M1
N for all N and some absolute constant M1 that depends

only on the values of the job arrival rate λ, token-earning probability ϕ, and upper bound w̄.

We prove Proposition 4.4 in Appendix A.3. Intuitively, as the number of servers N increases,

both the job arrival rate at the shared pool (which equals the collective requesting-help rates across

servers) and the job processing rate at the shared pool (which equals the collective offering-help

rates across servers) grow to infinity, because all servers presume that shared pool waiting time is

at most w̄. On the other hand, the job arrival rate at the shared pool is always a fraction ϕ < 1

of the job processing rate there (see Remark 3.1). Consequently, the expected waiting time in the

shared pool diminishes to zero when the number of servers N increases. We use a drift analysis to

show this formally.

4.2.2 Existence of FMFE

According to Proposition 4.4, if all servers presume the shared pool waiting time w to be less than

one and follow the best-response policy in Corollary 4.3, the induced waiting time is indeed below
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one when the number of servers N is large. Therefore, all servers following the best-response policy

in Corollary 4.3 forms an FMFE. We formally state this in Proposition 4.5.

Proposition 4.5. Suppose that all servers follow the best-response strategy in Corollary 4.3. This

constitutes an FMFE when the number of servers N is large.

The minimum number of servers N to maintain such an FMFE in Proposition 4.5 can be spec-

ified either analytically or numerically. From Corollary 4.3, this necessitates the induced shared

pool waiting time w below one when all servers follow the FMFE strategy. For instance, consider a

scenario where the token-earning probability ϕ equals the job arrival rate λ. In this case, the FMFE

strategy is to implement complete resource pooling by the discussion following Corollary 4.3. No-

tably, when all servers follow the FMFE complete-resource-pooling strategy, the shared pool evolves

as an M/M/1 queue with job arrival and processing rates of Nλ and N , respectively. Consequently,

the expected number of jobs in the shared pool equals λ
1−λ in the stationary distribution. Applying

Little’s Law, the expected waiting time in the shared pool is w = λ
1−λ

1
Nλ = 1

N(1−λ) . Therefore, to

ensure that w ≤ 1 and hence complete resource pooling is an FMFE when ϕ = λ, the number of

servers should be at least ⌈ 1
1−λ⌉. Specifically, this implies a minimum of three servers when λ = 0.6,

five servers when λ = 0.8, and ten servers when λ = 0.9. In Section 6, we demonstrate that all

servers following the FMFE strategy is an approximate equilibrium in the original problem for large

markets for any value of ϕ, and we show via numerical results that complete resource pooling is an

approximate equilibrium when ϕ = λ even for small markets with only a few servers (e.g., with ten

servers).

5 Optimal Value of ϕ

In this section, we investigate the optimal value of ϕ, which governs the token acquisition rate when

a server “mines” tokens by offering help. Intuitively, if ϕ is set too low, it is challenging to earn

tokens, causing servers to be conservative in requesting help. This impedes cooperation and leads

to longer queues at the servers. Conversely, if ϕ is set too high, the token acquisition becomes too

effortless. In this case, servers may lack the incentive to offer help, even when there is no job in

their queues. This diminishes the overall system efficiency.

We examine the optimal value of ϕ in the regime with many servers. According to Proposi-

tion 4.4, for any value of ϕ ∈ (0, 1), the shared pool waiting time w decreases to zero as the number

of servers grows, assuming some level of server cooperation. We thus focus on the limit where w
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approaches zero (or nearly so) for any value of ϕ ∈ (0, 1). In this case, servers’ optimal strategies are

detailed in Corollary 4.3. Additionally, it forms an FMFE when all servers follow such a strategy

and the number of servers is large by Proposition 4.5.

According to Corollary 4.3, there is a phase transition in the dynamics of servers as the token-

earning probability ϕ varies. To see this, let R(ϕ) and P (ϕ) denote the steady-state rates of

requesting help and offering help, respectively, and q(ϕ) the expected queue length of a server in

the stationary distribution, all in the fluid mean-field problem and under the optimal strategy in

Corollary 4.3. These two rates and the expected queue length q(ϕ) of a server are depicted in

Figure 1.

We first consider the case that ϕ ≤ λ. From Corollary 4.3 and Appendix B.2.1 we have

P (ϕ) =
1− λ

1− ϕ
,

R(ϕ) = ϕ · P (ϕ) = ϕ · 1− λ

1− ϕ
,

and the expected queue length q(ϕ) of a server is expressed in (11) in the Appendix. When ϕ ≤ λ,

both the requesting and offering help rates increase with ϕ, while the expected queue length of a

server decreases with ϕ. Intuitively, as the token-earning probability ϕ increases, it becomes easier

to earn tokens. Hence, a server is more willing to request help by spending tokens, which leads to a

shorter queue. Meanwhile, a server offers help more to earn more tokens because the expected rates

of earning and spending tokens need to be equal. When the token-earning probability ϕ is strictly

less than λ, each server has q(ϕ) > 0 jobs in expectation. Since the expected number of jobs in

the shared pool is bounded by a constant uniformly for any number of servers by Proposition 4.4,

the expected number of jobs in the system scales linearly with the number of servers N , and is

approximately q(ϕ) ·N when the number of servers N is large.

Nevertheless, when the token-earning probability ϕ equals the job arrival rate λ, by the dis-

cussion following Corollary 4.3, it is every server’s best strategy to request help for all incoming

jobs and, upon the arrival of a capacity unit, offer help to the shared pool as long as its queue

is empty. Consequently, the rate of requesting help equals the job arrival rate λ, and the rate of

offering help equals the arrival rate of capacity units, which is one. Additionally, this results in

an empty queue at each server, i.e., q(λ) = 0. In this case, all of the jobs are in the shared pool.

The dynamics of the shared pool is an M/M/1 queue with job arrival and processing rates of Nλ

and N , respectively. Thus, the total number of jobs in the system is λ
1−λ in expectation. In this

case, complete resource pooling is achieved, and the system’s dynamics under the mechanism are
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identical to the dynamics under centralized control.

On the other hand, when ϕ ≥ λ, the steady-state rates of requesting and offering help are

P (ϕ) =
λ

ϕ
,

R(ϕ) = ϕ · P (ϕ) = λ ,

and a server’s queue remains empty by Corollary 4.3. In this case, it is fairly easy to earn tokens,

allowing a server to earn sufficient tokens to request help for all incoming jobs. However, the

server earns just enough tokens for incoming jobs, by dedicating a fraction λ/ϕ of capacity units

to serve the shared pool, while being idle for the rest of the time. Therefore, as the token-earning

probability ϕ increases, the rate of requesting help remains constant (which equals the job arrival

rate λ) whereas the rate of offering help is λ/ϕ, which decreases with ϕ. Thus, although for any

ϕ ≥ λ the waiting time in the shared pool asymptotically diminishes to zero as the number of

servers increases (Proposition 4.4), the shared pool’s queue length and the waiting time in the

shared pool increase with the value of ϕ for any problem instance. Specifically, when ϕ ≥ λ, all of

the jobs are in the shared pool. Additionally, the dynamics of the shared pool is an M/M/1 queue

with job arrival and processing rates of Nλ and Nλ/ϕ, respectively. Therefore, the total number

of jobs in the system is ϕ
1−ϕ in expectation, which increases with ϕ.

Theorem 5.1 characterizes the level of system congestion (i.e., the job total in the system) as a

function of ϕ based on the above discussion.

Theorem 5.1. Suppose all servers follow the FMFE strategy in Corollary 4.3 in the fluid mean-

field problem. This forms an FMFE when the number of servers N is large by Proposition 4.5.

Let QΣ(ϕ) denote the expected number of jobs in the system in the stationary distribution when the

token-earning probability equals ϕ. We have

1. limN→∞QΣ(ϕ)/N = q(ϕ) when ϕ < λ, where q(ϕ) denotes the expected queue length of a

server in the stationary distribution. Notably, q(ϕ) is decreasing is ϕ; the expression of q(ϕ)

is visualized in Figure 1b and provided in (11) in the Appendix.

2. QΣ(ϕ) =
ϕ

1−ϕ when ϕ ≥ λ.

According to Theorem 5.1, the optimal value of the token-earning probability ϕ equals the job

arrival rate λ, as we state formally in Theorem 5.2.

Theorem 5.2. The optimal value of the token-earning probability ϕ equals the job arrival rate λ

when the number of servers N is large. In this case, complete resource pooling is an FMFE,
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Figure 1: Steady-state rates of requesting and offering help (Figure 1a) and expected queue length of a server
in the stationary distribution (Figure 1b) in the fluid mean-field problem, when job arrival rate λ = 0.8 and
the server follows the FMFE policy in Corollary 4.3. The offering help rate is 1−λ

1−ϕ for ϕ ∈ [0, λ] and λ
ϕ for

ϕ ∈ [λ, 1]; the requesting help rate is ϕ times the offering help rate, i.e., is ϕ · 1−λ
1−ϕ for ϕ ∈ [0, λ] and a constant

λ for ϕ ∈ [λ, 1].

and the system’s dynamics and performance under the token-based mechanism match those under

centralized control.

6 FMFE Strategy as a Near-Optimal Best Response

In this section, we justify the use of the FMFE concept introduced in Section 3 for analyzing the

mechanism. First, we rigorously show that playing an FMFE strategy when all other servers follow

the FMFE strategy is a near-optimal best response in large markets with many servers, for any value

of ϕ ∈ (0, 1) (Section 6.2). Then, we illustrate via numerical results that when the token-earning

probability ϕ equals its optimal value λ, complete resource pooling is an approximate equilibrium

even for small markets with only a few servers (Section 6.3).

6.1 FMFE Strategy in the Original Problem

The FMFE strategy in Corollary 4.3 can be implemented in the original problem (where the number

of tokens Si(t) a server i possesses at time t needs to satisfy 0 ≤ Si(t) ≤ C) as well, with the only

difference that a server can request help only when it has a positive number of tokens and offer help
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when its token count is below the upper bound value of C. As a result, the token count is always

within the range of zero to C. We denote by πF the FMFE strategy described in Corollary 4.3 and

π̄F the modified version of πF that ensures feasibility in the original problem.

Note that both the policies πF and π̄F are feasible to the fluid mean-field problem V F(w) defined

in (2). Moreover, the policy πF is optimal to V F(w) when the shared pool waiting time w ≤ 1 by

Corollary 4.3. The two policies πF and π̄F take different actions only when the token count is either

zero or the upper bound value C in the original problem. In Lemma 6.1 we show the probability

that such an event happens under policy π̄F decays to zero at a rate of
(
1
C

)
. Thus, the dynamics

of policy π̄F in the original problem converges to the dynamics of policy πF in the fluid problem

(where the constraint 0 ≤ Si(t) ≤ C is dropped) as the upper bound value C increases. Therefore,

the fluid relaxation in the definition of FMFE is essentially tight for a large value of C.

Lemma 6.1. Let S̄i(∞) denote the number of tokens of server i in the stationary distribution of

policy π̄F. We have

P
[
S̄i(∞) = 0

]
+ P

[
S̄i(∞) = C

]
≤ M2

C

for some constant M2 that depends only on the values of λ and ϕ.

We prove Lemma 6.1 in Appendix C.1. Since the dynamics of the FMFE strategy in the

original problem converge to that in the fluid problem as the upper bound value C increases, the

expected queue length and rates of requesting and offering help also converge, as we demonstrate

in Lemma 6.2. We prove Lemma 6.2 in Appendix C.2.

Lemma 6.2. Consider a representative server i that follows the FMFE strategy in both the original

and fluid problems. Let Q̄i(∞) denote the queue length of server i in the stationary distribution and

P[X̄i(∞) = 1] and P[Ȳi(∞) = 1] the stationary rates of requesting and offering help, under policy

π̄F. Analogously, let Qi(∞) denote the queue length of server i in the stationary distribution and

P[Xi(∞) = 1] and P[Yi(∞) = 1] the stationary rates of requesting and offering help, under policy

πF. We have

1. E[Qi(∞)] ≤ E[Q̄i(∞)] ≤ E[Qi(∞)] + M3
C ,

2. P[X̄i(∞) = 1] ≤ P[Xi(∞) = 1] ≤ P[X̄i(∞) = 1] + M4
C ,

3. P[Ȳi(∞) = 1] ≤ P[Yi(∞) = 1] ≤ P[Ȳi(∞) = 1] + M5
C ,

where M3, M4 and M5 are constants that depend only on the values of λ and ϕ.
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Finally, analogous to Proposition 4.4, if all servers follow the FMFE policy π̄F in the original

problem, the long-run average waiting time in the shared pool diminishes to zero at a rate of

O
(
1
N

)
as the number of servers N increases. This is formalized in Proposition 6.3. We prove

Proposition 6.3 in Appendix C.3.

Proposition 6.3. Suppose all servers follow the FMFE policy π̄F in the original problem. Then,

1. The expected shared pool queue length in the stationary distribution remains uniformly bounded

from above for any number of servers N and any upper bound value C for the token amount.

In other words, E[Q̄i(∞)] ≤ M6 for some absolute constant M6 that depends only on the

values of the job arrival rate λ and token-earning probability ϕ and is independent of the

number of servers N or the upper bound value C.

2. The long-run average waiting time of jobs in the shared pool, denoted by w, satisfies w ≤ M7
N

for some absolute constant M7, which depends only on the values of the job arrival rate λ

and token-earning probability ϕ and is independent of the upper bound value C for the token

amount.

6.2 Asymptotic Analysis for Large Markets

In this section, we demonstrate that given any token-earning probability ϕ ∈ (0, 1), playing an

FMFE strategy when all other servers follow the FMFE strategy is a near-optimal best response

when the number of servers is large.

Specifically, assume that servers two to N follow the FMFE strategy π̄F in the original problem.

Let QF denote the queue length of a server in the stationary distribution of the fluid mean-field

problem when it follows the FMFE strategy πF. We remark that cλ+ E
[
QF
]
is the optimal time-

average total cost in the fluid mean-field problem when the shared pool waiting time w = 0, i.e.,

V F(0) = cλ + E
[
QF
]
. We first show in Lemma 6.4 that, if server one in the original problem also

follows the FMFE strategy π̄F, its time-average total cost surpasses cλ+E
[
QF
]
by only O

(
1
N + 1

C

)
.

Lemma 6.4. Suppose that all servers follow the FMFE strategy π̄F in the original problem. Then,

the time-average total cost of server one is at most cλ+E
[
QF
]
+ M3

C + λM7
N , where M3 and M7 are

constants specified in Lemma 6.2 and Proposition 6.3 whose values depend only on λ and ϕ.

We prove Lemma 6.4 in Appendix C.4. Assume that server one also follows the FMFE policy

π̄F. Intuitively, if there are many servers, the waiting time in the shared pool is nearly zero and on

the order of O
(
1
N

)
(Proposition 6.3). Additionally, when the token-amount upper bound C is large,
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the expected queue length under policy π̄F is close to that under policy πF in the fluid mean-field

problem and differs by at most O
(
1
C

)
(Lemma 6.2). Therefore, the time-average total cost of server

one deviates from the optimal value of the fluid mean-field problem, which is cλ + E
[
QF
]
, by an

amount of O
(
1
N + 1

C

)
.

Next, we demonstrate in Lemma 6.5 that no matter what strategy server one uses, its time-

average total cost is at least cλ+ E
[
QF
]
−O

(
1

N1−δ

)
for any δ > 0.

Lemma 6.5. Suppose that servers i ∈ [2 :N ] follow the FMFE strategy π̄F in the original problem.

The time-average total cost of server one is at least cλ+E
[
QF
]
− M8(λ,ϕ,δ)

N1−δ for any δ > 0, regardless

of the strategy server one uses, where M8 is a constant that depends only on the values of λ, ϕ, and

δ.

We prove Lemma 6.5 in Appendix C.5. The proof follows two key steps:

1. We establish a relaxation to the problem of server one, where we endow server one with an

additional power to empty the shared pool at the end of every interaction (i.e., requesting

or offering help) with the shared pool. We show that in the relaxation, it is without loss of

optimality to request help only when a job arrives, thus building a connection to the fluid

mean-field problem.

2. Using a coupling argument along with a drift analysis, we show that the queue length of the

shared pool transitions to the stationary distribution quickly as the number of servers grows.

Moreover, in the stationary distribution, the shared pool is non-empty with a probability

close to ϕ. This implies that the optimal time-average cost in the relaxation is no smaller

than the optimal value of the fluid mean-field problem (which equals cλ+ E[QF]) less than a

small term that is O
(

1
N1−δ

)
.

Intuitively, as the number of servers increases, the queue length of the shared pool transitions to

the steady state quickly. Therefore, it becomes more difficult to be strategic to the dynamics of

the shared pool. Specifically, from Lemmas 6.4 and 6.5, if we set the token-amount upper bound

to be C = Ω
(
N
)
, the benefit from deviating from the FMFE strategy is only a negligible term that

is nearly O
(
1
N

)
. This is the case even though server one is endowed with an unrealistic power to

empty the shared pool at the end of every interaction with it.
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6.3 Numerical Analysis for Small Markets

In Section 6.2, we rigorously justify that playing an FMFE strategy when all other servers play the

FMFE strategy is a near-optimal best response when the number of servers is large. In this section,

we demonstrate via numerical results that complete resource pooling is an approximate equilibrium

under our mechanism even for small markets with only a few servers (e.g., with ten servers).

Recall that the FMFE concept involves two approximations: a fluid relaxation that allows the

number of tokens a server possesses to be negative (and go beyond the upper bound value C) and

only requires that the expected rates of earning and spending tokens are equal in the long-run

average; and a mean-field approximation as a large market approximation, motivated by the fact

that the shared pool’s queue length becomes roughly constant over time in the presence of many

servers due to the averaging effect. The first approximation is tight when a server can possess many

tokens (see Section 6.1). For this reason, we isolate the impact of the mean-field approximation for

small markets and analyze a simplified fluid problem numerically.

The Fluid Problem We investigate the token-based mechanism when the token-earning proba-

bility ϕ equals λ (which is optimal by Theorem 5.2). Suppose that servers two to N implement

complete resource pooling (which is the FMFE strategy when ϕ = λ by Corollary 4.3), i.e., each

server requests help for all incoming jobs (disregarding the nonnegativity constraint of tokens) and

offers help to the shared pool upon the arrival of each capacity unit. We examine the best response

of server one to the strategies of the other N − 1 servers in a fluid problem, where the token count

of server one can go negative and go beyond the upper bound value C, but the expected rates of

earning and spending tokens need to be equal in the long-run average. In the fluid problem, server

one equivalently interacts with an M/M/1 queue (representing the shared pool) that has a job

arrival rate of (N − 1)λ and an arrival rate of capacity units of (N − 1).

Server One’s Problem In a small market, a strategic server would like to continually infer the

shared pool’s queue length to request help only when the shared pool experiences low congestion.

Additionally, the server is more willing to offer help when she is aware that the shared pool is

empty, as this presents an opportunity to earn a token without incurring the cost of processing a

job from the shared pool.10

However, the optimal strategy of server one is challenging to solve. Particularly, the server

10However, as we show in Section 6.2, as the number of servers increases, the shared pool’s queue length converges
to the steady state quickly. Therefore, it becomes more difficult to be strategic to the dynamics of the shared pool,
and as a result, the benefit from deviating from the FMFE strategy becomes negligible.
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can only make inferences about the shared pool based on partial information obtained from its

interactions with the shared pool.11 Consequently, server one’s optimal strategy is contingent

upon the entire history of observations. To address this, we relax the problem of server one by

providing the server additional advantages to obtain a tractable upper bound on the benefit of

playing strategically. First, we enable server one to have complete information about the shared

pool so that the server can make decisions based on its queue length. Second, we introduce a lower

bound on the waiting time in the shared pool. Particularly, when server one requests help for a

job, we let the job’s waiting time in the shared pool be q0+1
N , where q0 denotes the shared pool’s

queue length at the current time. Notably, since the rate at which capacity units join the shared

pool is at most N and there are q0 jobs ahead of the job awaiting processing, this provides a lower

bound on the expected waiting time in the shared pool.

After the two relaxations, server one’s optimal strategy depends only on two state variables—

server one’s queue length and the queue length of the shared pool; this leads to a tractable op-

timization problem, and we formulate the problem in Appendix D. We remark that the optimal

strategy can be quite different from the complete-resource-pooling FMFE strategy. For example,

server one may relocate a job to the shared pool when another server has served a job from the

pool, thus reducing the queue length of the shared pool. Additionally, when a job arrives, server

one may instead add the job to its queue if the shared pool has high congestion at that moment.

Numerical Results We compare the time-average total cost of server one in the fluid problem

under the FMFE strategy (i.e., employing complete resource pooling) with that of the best response

when the server has complete information about the shared pool. We show that the sub-optimality

gap is small, even with only a few servers.

Specifically, we consider problem instances with job arrival rate λ ∈ {0.7, 0.8, 0.9}, number of

servers N increasing linearly from 4 to 20 with step size 2, and job processing cost c = 1. For fixed

values of λ andN , we evaluate (a) the time-average total cost V CRP when server one follows complete

resource pooling, which is λ
(
c+ 1

N(1−λ)

)
, where 1

N(1−λ) = λ
1−λ · 1

Nλ is the expected waiting time

of a job in the shared pool by Little’s law, and (b) the time-average total cost V OPT of an optimal

strategy that has complete information about the shared pool, which can be obtained from solving

a two-dimensional dynamic program in Appendix D. We evaluate the relative sub-optimality gap

V CRP−V OPT

V OPT , and plot the gap as a function of the number of servers in Figure 2.

From Figure 2, as the number of servers increases, the sub-optimality of playing complete

11Please refer to the paragraph of “The Shared Pool” in Section 2.2.1.
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Figure 2: Complete resource pooling versus best response.

resource pooling decreases fast. In particular, the sub-optimality gap is smaller than 5% when

there are more than 8 servers when λ = 0.7 (4.43%), 10 servers when λ = 0.8 (4.27%), and 18

servers when λ = 0.9 (4.01%). The sub-optimality gap further drops below 1% when there are 16

servers when λ = 0.7 (0.87%) and 18 servers when λ = 0.8 (0.89%). We highlight here that the

sub-optimality gap we evaluate in these examples is conservative in that the benchmark policy has

an unrealistic informational edge because it can perfectly monitor the congestion level of the shared

pool. However, within our mechanism, servers can only infer partial information about the shared

pool based on the outcome of offering help and the status of relocated jobs. Hence, the ability to

be strategic to the dynamics of the shared pool will be even more limited in the original problem.

In all, our numerical results above indicate that the value of continuously inferring the congestion

level of the shared pool is small even in the presence of only a few servers. In other words, a given

server has a limited ability to strategize and impact the market when all other servers adopt

complete resource pooling.

7 Extension to Heterogeneous Servers

Our token-based mechanism and its performance analysis developed in previous sections can be

extended to a more general setting with heterogeneous servers (we still require that jobs are stochas-

tically identical). We model the dynamics of each server as in Section 2. However, jobs and capacity

units can arrive at different servers at different rates. Specifically, we let λi > 0 denote the job
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arrival rate and µi > λi the arrival rate of capacity units at server i. These arrival processes are

independent across servers. Additionally, we let ρi =
λi
µi

< 1 denote the utilization factor of server

i. We assume the following regularity condition on the problem primitives in Assumption 7.1.

Assumption 7.1. For all servers i, the utilization factors are uniformly bounded from above and

below by some positive constants ρ, ρ̄ ∈ (0, 1), i.e., 0 < ρ ≤ ρi ≤ ρ̄ < 1 for any i ∈ [N ]. Moreover,

the arrival rates are uniformly bounded from above and below by positive constants λ, λ̄ > 0, i.e.,

0 < λ ≤ λi ≤ λ̄ for any i ∈ [N ].

The Centralized Setting Since jobs are identical, in the centralized setting, the central planner

would direct an idle server to process jobs from other queues to minimize the job total in the system.

The dynamics of the number of jobs in the system is an M/M/1 queue with a job arrival rate of

λc ≜
∑

i∈[N ] λi and a processing rate of µc ≜
∑

i∈[N ] µi. As a result, the equivalent utilization

factor of the system is ρc ≜ λc/µc ∈ [ρ, ρ̄], and the expected total number of jobs in the stationary

distribution is ρc
1−ρc

, which is between
ρ

1−ρ and ρ̄
1−ρ̄ .

The Token-Based Mechanism We consider the token-based mechanism defined in Section 2.2.1

with the token earning probability being ϕ = ρ̄, the largest utilization factor among servers.

We first characterize the FMFE. Suppose a server i presumes the waiting time in the shared

pool to be small. Since ϕ = ρ̄ ≥ ρi, by case two of Corollary 4.3, the server’s optimal strategy

in the fluid mean-field problem is as follows: (i) requesting help for all incoming jobs; (ii) when a

capacity unit arrives, serving a job from its queue if one is present; otherwise, if its queue is empty,

offering help to the shared pool with probability ρi/ρ̄ and being idle with probability 1− ρi/ρ̄.

Conversely, if all servers follow the strategy, the dynamics of the queue length of the shared

pool is an M/M/1 queue with a job arrival rate of λm ≜
∑

i∈[N ] λi and a processing rate of

µm ≜
∑

i∈[N ] µi · ρi/ρ̄ = λm/ρ̄. Therefore, the equivalent utilization factor under the mechanism

is ρm ≜ ρ̄. Consequently, the steady-state queue length of the shared pool is ρ̄
1−ρ̄ , and by Little’s

law, the steady-state waiting time in the shared pool diminishes to zero at a rate of O
(
1
N

)
as the

number of servers N increases. Therefore, if all servers follow the FMFE strategy πF, it forms an

FMFE when the number of servers is large.

Comparison of System Congestion In the above FMFE, the total number of jobs in the system

is ρ̄
1−ρ̄ (because all servers have empty queues). This is at most a constant

ρ̄(1−ρ)

ρ(1−ρ̄) times the total

number of jobs in the centralized setting. Therefore, complete resource pooling is almost achieved.
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In the special case where servers have the same utilization factor, complete resource pooling is

attained precisely, even if servers may have varying job arrival and processing rates. We summarize

these in Theorem 7.1, which extends Theorem 5.2 for the case of homogeneous servers.

Theorem 7.1 (Extension of Theorem 5.2). Suppose Assumption 7.1 holds, and consider the token-

based mechanism with token-earning probability ϕ = ρ̄. If all servers follow the FMFE strategy πF,

this forms an FMFE when the number of servers is large. In this case, the expected number of

jobs in the system is, at most, a constant factor of the number of jobs in the centralized setting.

In addition, if servers have the same utilization factor, the mechanism attains the exact complete

resource pooling.

We next show that all servers following the FMFE strategy is an approximate equilibrium. For

simplicity, we focus on the fluid problem described in Section 6.3. Recall that the fluid problem

relaxes the constraint that the token count must be within the range of zero to the upper bound

value C. In the fluid problem, servers two to N follow the FMFE policy πF, whereas server one

minimizes its time-average total cost subject to the flow balance constraint of the tokens (i.e., the

expected rates of earning and spending tokens need to be equal). The fluid problem corresponds to

the original problem where the token-amount upper bound C is infinity. In this case, the probability

of servers two to N running out of tokens in the original problem is zero by Lemma 6.1; thus, the

dynamics for servers two to N are identical in the original and fluid problems. As we show in

Theorem 7.2, analogous to Lemmas 6.4 and 6.5, it is a near-optimal best response for server one to

follow the policy πF in the fluid problem. The proof of Theorem 7.2 parallels the proofs of Lemmas

6.4 and 6.5, and we provide it in Appendix C.6.

Theorem 7.2 (Extension of Lemmas 6.4 and 6.5). Suppose Assumption 7.1 holds, and consider the

token-based mechanism with token-earning probability ϕ = ρ̄. Moreover, suppose servers two to N

follow the FMFE strategy πF. We have the following results.

1. (Extension of Lemma 6.4) If server one also follows policy πF, its time-average total cost is

upper-bounded by cλ1 +
λ̄ρ̄

λ(1−ρ̄)·N .

2. (Extension of Lemma 6.5) Regardless of the strategy server one uses, its time-average total

cost is lower-bounded by cλ1− M9(λ,ρ̄,δ)
N1−δ for any δ > 0 and a constant M9

(
λ, ρ̄, δ

)
that depends

only on the values of λ, ρ̄, and δ.

Therefore, the benefit from deviating from the FMFE strategy πF is at most λ̄ρ̄
λ(1−ρ̄)·N + M9(λ,ρ̄,δ)

N1−δ ,

which is negligible when the number of servers increases.
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Comparison of Allocation of Job Processing Costs The long-run average job processing cost,

which equals c ·
∑

i∈[N ] λi, is distributed among servers proportional to the flow of capacity units a

server contributes to the system, both in the centralized setting and under our mechanism.

In the centralized setting, servers share the processing cost proportional to their job processing

rates µi. Therefore, a server with a higher value of µi undertakes a higher processing cost, even

though its demand for computing resources, which equals λi, is low. Thus, the central planner

discriminates against high-processing-rate servers to minimize system congestion. As a result, a

server i would like to pretend that its processing rate is λi/ρ̄ if it is possible.

In contrast, under our mechanism, every server i contributes its capacity units at a rate of

µi · ρi/ρ̄ = λi/ρ̄. Consequently, the job processing cost is allocated among servers proportional to

λi, which aligns with servers’ individual demand for computing resources. Therefore, the cost is

allocated fairly among servers, which is a requisite given that servers cooperate in their self-interest

in our mechanism.

8 Conclusions

We have considered the problem of incentivizing resource pooling among N strategic servers in

a limited information setting, with applications in designing decentralized computing markets on

blockchains (among others). Our main contribution is a simple token-based mechanism. Although

the induced dynamic game is complex, we apply a notion of fluid mean-field equilibrium to simplify

the analysis. We demonstrate that the mechanism incentivizes complete resource pooling when the

number of servers is large. Moreover, we show via numerical results that complete resource pooling

is an approximate equilibrium even for small markets with only a few servers, providing further

practical support to our proposed mechanism. Finally, we extend our mechanism to a setting with

heterogeneous servers and show that the system performance is close to that under centralized

control.

The paper opens up many promising directions for future research. First, it is interesting to

extend our mechanism further to a more general setting where both jobs and servers are heteroge-

neous, and the job processing time depends on the specific job-server pair. In this setting, even the

centralized control benchmark can be challenging to solve as work-conserving policies are not nec-

essarily optimal.12 Nevertheless, we are optimistic that the mechanism we develop can shed light

on mechanism design in this more general setting. Beyond that, we are hopeful that our mecha-

12This is because a planner may intentionally idle a server to await a better-fit job.
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nism and analytical techniques can provide insights into the design and analysis of near-optimal

mechanisms for various other decentralized applications.
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A Proofs for Sections 3 and 4

A.1 Proof of Lemma 3.1

When a server offers help in the mean-field problem, the server receives a token with a probability
of ϕ, while incurring a cost of c (for processing a job from the shared pool) also with probability
ϕ; these two events are statistically independent. We can consider an equivalent setting where
the server, when providing help, obtains a token and confronts the cost c simultaneously with
probability ϕ, while experiencing no cost and no token acquisition with probability 1− ϕ (i.e., the
cost and token acquisition are perfectly correlated). These two settings are equivalent because they
share the same transition probabilities and expected payoffs per period. We now prove Lemma 3.1
in the equivalent setting.

First, we remark that a server requests help either (i) upon the arrival of a job, or (ii) after the
server has taken an action when a capacity unit arrives. To see this, suppose that the server instead
requests help at time t, even though neither a job nor a capacity unit arrives at that moment. Let
t′ < t be the time when the most recent job or capacity unit arrived. The server is better off
requesting help at time t′ instead of waiting till t, because waiting till t does not provide additional
information about the shared pool, but incurs a higher holding cost.

Second, we show that a server will not request help when a capacity unit arrives (scenario (ii)).
To see this, suppose a capacity unit arrives. First, if the server opts to be idle and waste the unit,
there is no change in the queue length or the number of tokens the server owns. Therefore, the
server would not request help (otherwise, it would do so before the capacity unit arrives). Second,
if the server intends to serve a job from its queue, the queue becomes shorter, and the benefit of
requesting help decreases. Since the server does not request help before the capacity unit arrives,
it will not do so after the arrival. Lastly, suppose it is optimal to offer help to the shared pool. In
this case, the server could expend a token to request help immediately if it obtains a token at a
cost of c. However, it is suboptimal because the server could be better off serving a job from its
queue right away (rather than offering help and then requesting help upon earning a token), so the
job gets served immediately (rather than waiting to be served in the shared pool). Consequently, it
is better to serve a job from the queue with probability ϕ and be idle and waste the capacity unit
with probability 1− ϕ, instead of offering help; a contradiction to the optimality of offering help.

Therefore, a server requests help only when a job arrives (scenario (i)). In this case, the server
would only request help for the incoming job. This is because if the server would like to request
help for a second job, the server would ideally do so before the arrival of the new job; however, this
does not hold true.

A.2 Proof of Lemma 3.2

We consider a representative server. Let p(q, s) denote the long-run average joint probability of
having q jobs and s tokens, and p(q) =

∑
s∈Z p(q, s) the marginal probability of having q jobs. The

objective function of (2) can be expressed as∑
q∈N

∑
s∈Z

p(q, s) ·
{

q

1 + λ
+ w · λ

1 + λ
· P
(
X = 1

∣∣q, s)+ c · 1

1 + λ
·
[
P
(
Y = 0

∣∣q, s)+ ϕ · P
(
Y = 1

∣∣q, s)]}

=
∑
q∈N

p(q) ·
{

q

1 + λ
+ w · λ

1 + λ
· P
(
X = 1

∣∣q)+ c · 1

1 + λ
·
[
P
(
Y = 0

∣∣q)+ ϕ · P
(
Y = 1

∣∣q)]},
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where P
(
X = 1

∣∣q) = ∑
s∈Z p(q, s) · P(X = 1|q, s)/p(q) denotes the marginal probability of taking

the action X = 0 when there are q jobs and a new job arrives, and P
(
Y = 0

∣∣q) and P
(
Y = 1

∣∣q) are
defined analogously as the marginal probability of taking the action Y = 0 or Y = 1 when there
are q jobs and a capacity unit arrives. Similarly, we can express the tokens’ flow-balance constraint
in (2) as

λ

1 + λ

∑
q∈N

p(q) · P
(
X = 1

∣∣q) = ϕ

1 + λ

∑
q∈N

p(q) · P
(
Y = 1

∣∣q).
Since both the objective function and constraint of (2) are independent of the number of tokens s,
the optimal policy of (2) is independent of s as well.

Finally, let P
(
q,X

)
= λ

1+λ · p(q) · P
(
X
∣∣q) and P

(
q, Y

)
= 1

1+λ · p(q) · P
(
Y
∣∣q) denote the joint

probabilities of having q jobs and taking the action of X or Y , respectively; we can rewrite (2) as
a linear program (3).

V F(w) = min
p(q),P(q,X),P(q,Y )≥0

∑
q∈N

{
q

1 + λ
· p(q) + w · P

(
q,X = 1

)
+ c ·

(
P
(
q, Y = 0

)
+ ϕ · P

(
q, Y = 1

))}
s.t.

∑
q∈N

P
(
q,X = 1

)
=
∑
q∈N

ϕ · P
(
q, Y = 1

)
,

P
(
q,X = 0

)
= P

(
q + 1, Y = 0

)
, ∀ q ∈ N, (3)

P
(
q,X = 0

)
+ P

(
q,X = 1

)
=

λ

1 + λ
· p(q), ∀ q ∈ N,

P
(
q, Y = 0

)
+ P

(
q, Y = 1

)
+ P

(
q, Y = ∅

)
=

1

1 + λ
· p(q), ∀ q ∈ N,∑

q∈N
p(q) = 1.

In (3), the first constraint represents the flow balance constraint of the tokens, i.e., expected
rates of earning and spending tokens need to be equal in the long-run average. Once we fix a
policy, the dynamics of the queue length q follow a birth-and-death chain process; hence, the
stationary distribution is reversible, as indicated by the second constraint in (3). We can interpret
(3) as computing an optimal stationary distribution of the queue-length-control pairs to minimize
a server’s time-average cost.

A.3 Proof of Proposition 4.4

In the proof, we let Qi(t) denote the queue length of server i for any i ∈ [N ] and Q0(t) the queue
length of the shared pool in time t. Additionally, let the vector Q(t) =

(
Qi(t)

)
i∈[0:N ]

denote the

concatenation of the queue lengths. The queue length vector Q(t) is a Markov chain. Finally, let
Q0(∞) denote the shared pool’s queue length in the stationary distribution.

A.3.1 Step One: A Coarse Bound on the Tail Probability of Q0(∞)

We first provide a coarse bound on the tail probability of the shared pool queue length Q0(∞) in
Lemma A.1.
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Lemma A.1. For any m ∈ N, we have

P
(
Q0(∞) ≥ mN

)
≤ α1N · exp

(
− α2 ·m

)
for some constants α1, α2 > 0 that depend only on the values of λ, ϕ, and w̄.

We prove Lemma A.1 in Appendix A.3.6. We prove Lemma A.1 in Appendix A.3.6. In the
proof, we show that Q0(∞) is first-order stochastically dominated by the sum of N independent
random variables, each of which represents the number of jobs that belong to a server i. We then
bound the tail probabilities for each of the N random variables, thus obtaining the desired result.

A.3.2 Step Two: A High-Probability Event

We will provide a refined bound on the tail probability of the shared pool queue length Q0(∞) in
Step Three. To achieve this, we first consider a high-probability event as a preliminary step.

Note that by Remark B.6, the steady-state rates of requesting and offering help are decreasing
in the shared pool waiting time w. We let g > 0 denote the lower bound on the steady-state rate
of offering help, which corresponds to the case of w = w̄.

Let πq denote the stationary probability that a server has q jobs in its queue, and Aq and Sq the
probabilities that a server requests and offers help, respectively, when it has q jobs. By Remark 3.1,
the steady-state rate of requesting help is ϕ times the steady-state rate of offering help. Since the
steady-state rate of offering help is at least g, we have∑

q

πqAq −
∑
q

πqSq ≤ −(1− ϕ)g .

We now bound the deviation of the empirical distribution of the states of servers from their
stationary distribution. Specifically, let π̂ denote the empirical distribution of the queue lengths of
the N servers, i.e.,

π̂q(t) ≜
1

N

N∑
i=1

1
{
Qi(t) = q

}
.

Consider the high-probability set E as follows.

E ≜

{
π̂ :
∑
q

π̂qAq −
∑
q

π̂qSq ≤ −1

2
(1− ϕ)g

}
.

We bound the stationary probability of the exception event
{
π̂ /∈ E

}
in Lemma A.2, which shows

that the probability diminishes to zero exponentially fast.

Lemma A.2. Let P∞(·) denote the stationary probability of the queue length process Q(t). For any
number of servers N we have

P∞

(
π̂ /∈ E

)
≤ exp

(
−1

8
(1− ϕ)2g2N

)
.

Proof. Since every server uses an oblivious strategy (i.e., a strategy that depends only on a server’s
individual state), the dynamics of the N servers are independent by the design of mechanism. The
above inequality follows directly from Hoeffding’s inequality and the fact that Aq, Sq ≤ 1.
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A.3.3 Step Three: A Refined Bound on the Tail Probability of Q0(∞)

We now provide a refined bound on the tail probability of the shared pool queue length Q0(∞) in
Lemma A.3. Intuitively, conditional on the high-probability event

{
π̂ ∈ E

}
, the shared pool queue

length tends to have a short tail, because servers route more capacity units than jobs to the shared
pool (i.e., Q0(t) has a negative drift). On the other hand, the exception event

{
π̂ /∈ E

}
is rare by

Lemma A.2.

Lemma A.3. for any m ∈ N, we have

P
(
Q0(∞) >

2

(1− ϕ)g
+ 2m

)
≤

(
1

1 + 1
4(1− ϕ)g

)m+1

+

(
4

(1− ϕ)g
+ 1

)
P
(
π̂ /∈ E

)
≤
(

4

4 + (1− ϕ)g

)m+1

+

(
4

(1− ϕ)g
+ 1

)
exp

(
−1

8
(1− ϕ)2g2N

)
.

We prove the first inequality of Lemma A.3 in Appendix A.3.7 by using a drift analysis. The
second inequality follows directly from Lemma A.2.

A.3.4 Step Four: Uniform Bound on the Expected Shared Pool Queue Length

We now apply Lemmas A.1 and A.3 to bound the expected shared pool queue length in the
stationary distribution from above; specifically, we show that

E
[
Q0(∞)

]
≤ 10

(1− ϕ)g
+ o(1)

where o(1) denotes a term that diminishes to zero as the number of servers N grows to infinity.
This implies that the expected shared pool queue length is uniformly bounded from above for any
number of servers N . To see this, since

E
[
Q0(∞)

]
=

∞∑
n=0

P
(
Q0(∞) > n

)
≤

N2∑
n=0

P
(
Q0(∞) > n

)
+

∞∑
n=N2

P
(
Q0(∞) > n

)
,

we bound the two terms separately.
We first use Lemma A.1 to bound the second term. Specifically, we have

∞∑
n=N2

P
(
Q0(∞) > n

)
=

∞∑
m=0

N−1∑
u=0

P
(
Q0(∞) > N2 +mN + u

)
≤ N

∞∑
m=0

P
(
Q0(∞) > N2 +mN

)
≤ α1 ·N2

∞∑
m=0

exp
(
− α2 ·

(
N +m

))
=

α1

1− e−α2
N2 exp (−α2N) ,

where the second inequality follows from Lemma A.1 . This term diminishes to zero exponentially
fast as N → ∞.

38



We next bound the first term by using Lemma A.3. Specifically, we have

N2∑
n=0

P
(
Q0(∞) > n

)
≤ 2

(1− ϕ)g
+

N2/2∑
n=0

{
P
(
Q0(∞) >

2

(1− ϕ)g
+ 2n

)
+ P

(
Q0(∞) >

2

(1− ϕ)g
+ 2n+ 1

)}

≤ 2

(1− ϕ)g
+ 2

N2/2∑
n=0

P
(
Q0(∞) >

2

(1− ϕ)g
+ 2n

)

≤ 2

(1− ϕ)g
+ 2

N2/2∑
n=0

((
4

4 + (1− ϕ)g

)n+1

+

(
4

(1− ϕ)g
+ 1

)
exp

(
−1

8
(1− ϕ)2g2N

))

≤ 2

(1− ϕ)g
+ 2

∞∑
n=0

(
4

4 + (1− ϕ)g

)n+1

+ (N2 + 2)

(
4

(1− ϕ)g
+ 1

)
exp

(
−1

8
(1− ϕ)2g2N

)
where the third inequality follows from Lemma A.3. The third term in the right-hand side of the
last inequality diminishes to zero exponentially fast as N → ∞. The remaining terms are:

2

(1− ϕ)g
+ 2

∞∑
n=0

(
4

4 + (1− ϕ)g

)n+1

=
10

(1− ϕ)g
.

A.3.5 Step Five: Bounding the Shared Pool Waiting Time w

Since the steady-state rate of requesting help is a least ϕ · g for any server, by Little’s law we have

w ≤
E
[
Q0(∞)

]
ϕg ·N

≤ M1

N

for some constant M1 that depends only on the values of λ, ϕ, and w̄; the second inequality follows
from the fact that the expected queue length in the shared pool is uniformly bounded from above
by Step Four.

A.3.6 Proof of Lemma A.1

In the proof, we construct a stochastic process that has a stationary distribution that first-order
stochastically dominates the shared pool queue length Q0(∞).

Specifically, we consider an auxiliary process, denoted as Q̃(t) = (Q̃i(t))i∈[0:N ], that mimics the
original queue length processQ(t). We couple the two processes together so that they have identical
arrival sequences of jobs and capacity units at the servers. Each server i ∈ [N ] in the auxiliary
system takes the same actions of server i in the original system. The only difference between the
two systems is that: in the auxiliary system, when server i ∈ [N ] offers help, the provided capacity
unit can only be used to serve a job in the shared pool that came from server i (if no such a job
exists in the shared pool, the capacity unit is wasted). As a result, we have Q̃0(t) ≥ Q0(t) at any
time t ≥ 0. Furthermore, let Q̃Σ(t) ≜

∑N
i=0 Q̃i(t) ≥ Q̃0(t) denote the total number of jobs in the

auxiliary system. We have

Q̃Σ(∞) ⪰1 Q0(∞) ,

where ⪰1 indicates first-order stochastic dominance.
Let Zi(t) denote the number of jobs of server i in the auxiliary system at time t; i.e., Zi is the
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sum of the queue length of server i and the number of jobs in the shared pool that come from
server i. Since there is no interaction between any two servers in the auxiliary system, Zi(t) are
independent across servers. Additionally, since each job must belong to one server,

Q̃Σ(t) =
N∑
i=1

Zi(t), (4)

i.e., Q̃Σ(t) is the sum of the N independent random variables Zi(t). In Lemma A.4 we bound the
tail probability of the job count Zi(∞) in the stationary distribution for any server i.

Lemma A.4. Let Zi(∞) denote the number of jobs that belong to server i in the stationary distri-
bution. For any server i ∈ [N ] and integer m ∈ N we have

P
(
Zi(∞) ≥ m

)
≤ α1 · exp

(
− α2 ·m

)
,

where α1, α2 > 0 are two positive constants that depend only on the values of λ, ϕ, and w̄.

As a result, we have

P
(
Q0(∞) ≥ mN

)
≤ P

(
Q̃Σ(∞) ≥ mN

)
≤ P

(
Zi ≥ m for some i ∈ [N ]

)
≤

N∑
i=1

P
(
Zi ≥ m

)
≤ α1N · exp

(
− α2 ·m

)
,

where the first inequality follows from stochastic dominance, the second inequality from (4), the
third inequality from the union bound, and the last inequality from Lemma A.4.

Proof of Lemma A.4. We consider a representative server i that follows an optimal policy to a
certain fluid mean-field problem V F(w) with w ≤ w̄ < ∞. Since the server presumes the shared
pool waiting time w to be smaller than a fixed constant w̄ < ∞, and the set of all possible optimal
policies is finite when the value of w varies between zero and w̄ by Lemma 4.2, it suffices to prove
Lemma A.4 when the server follows any of the finite candidate optimal policies.

First, suppose Case One in Lemma 4.2 holds (i.e., w < m(k)). In this case, the server offers
help when a capacity unit arrives and its queue is empty. Therefore, the server in the auxiliary
system serves a job with probability one when a capacity unit arrives, and it has an affiliated job
(i.e., Zi ≥ 1). Consequently, the dynamics of Zi(t) is an M/M/1 queue with a job arrival rate of λ
and a job processing rate of one. Thus, P[Zi(∞) = i] = (1− λ)λi for all i ∈ N and, as a result,

P
(
Zi ≥ m

)
=

∞∑
i=m

(1− λ)λi = λm = exp
(
lnλ ·m

)
.

The inequality in Lemma A.4 holds with α1 = 1 and α2 = − lnλ > 0.
Secondly, suppose Case Two in Lemma 4.2 holds with z = 0; i.e., ϕ > λ and m(0) = 0 ≤ w ≤

m(1). In this case, the server routes all jobs to the shared pool and offers help with probability
λ/ϕ when a capacity unit arrives. Therefore, the dynamics of Zi(t) is an M/M/1 queue with a job

40



arrival rate of λ and a job processing rate of λ/ϕ. Thus, P[Zi(∞) = i] = (1 − ϕ)ϕi for all i ∈ N
and, as a result,

P
(
Zi ≥ m

)
=

∞∑
i=m

(1− ϕ)ϕi = ϕm = exp
(
lnϕ ·m

)
.

The inequality in Lemma A.4 holds with α1 = 1 and α2 = − lnϕ > 0.
Finally, suppose that Case Two in Lemma 4.2 holds with z ≥ 1. In this case, the server routes

an incoming job to the shared pool when its queue length reaches z and adds the job to its queue
otherwise. When a capacity unit arrives, the server serves a job from its queue if one is present
and offers help to the shared pool with probability p ≜ λz+1/ϕ otherwise. Let Q̃i(t) and Q̃0i(t)
denote the queue length of server i and number of jobs in the shared pool that come from server i,
respectively, in the auxiliary system (hence, Zi(t) = Q̃i(t)+Q̃0i(t)). The dynamics of

(
Q̃i(t), Q̃0i(t)

)
is a Markov chain and is visualized in Figure 3.

Let πjℓ = P
[
Q̃i(∞) = j, Q̃0i(∞) = ℓ

]
denote the stationary distribution of jobs of server i in

the auxiliary system. By analyzing the flow balance equations of the Markov chain (similar to the
approach in Appendix C.1.3), we obtain:

π0,ℓ+1 =
ϕ(1− λ)

1− λz+1
· π00 · ρℓ, ∀ ℓ ≥ 0,

πzℓ =
λz(1− λ)

1− λz+1
· π00 · ρℓ, ∀ ℓ ≥ 0,

with

ρ =
ϕ(1− λ) + λ(1− λz)

1− λz+1
∈ (0, 1).

(Note that 1− ρ = (1−λ)(1−ϕ)
1−λz+1 > 0.) Therefore,

πj,ℓ+1 = ρ · πjℓ, ∀ j ∈ [z], ℓ ≥ 1,

i.e., the stationary probabilities diminish exponentially fast as the number of jobs in the shared
pool increases. Thus,

P
(
Zi ≥ m

)
≤ α1 exp

(
ln ρ ·m

)
for some constant α1 > 0. The inequality in Lemma A.4 holds with constants α1 and α2 = − ln ρ >
0.
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Figure 3: Markov chain of
(
Q̃i(t), Q̃0i(t)

)
with z = 3. All unspecified transition rates take the value of one.
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A.3.7 Proof of Lemma A.3

We use a drift analysis to prove Lemma A.3. To do so, we consider an equivalent discrete-time model
of the system where in each period, either a job or a capacity unit arrives at some server i ∈ [N ].
For each server i ∈ [N ], let binary variable Ai(t) (and Si(t)) indicate if server i requests help (and
offers help) in period t. Moreover, let A(t) ≜

∑
i∈[N ]Ai(t) ∈ {0, 1} and S(t) ≜

∑
i∈[N ] Si(t) ∈ {0, 1}

indicate if there is any request or provision of help in period t. Since Q0(t+ 1) =
(
Q0(t) + A(t)−

S(t)
)+

, we have

Q2
0(t+ 1)−Q2

0(t) ≤
(
Q0(t) +A(t)− S(t)

)2 −Q2
0(t)

=
(
A(t)− S(t)

)2
+ 2Q0(t)

(
A(t)− S(t)

)
≤ 2Q0(t)

(
A(t)− S(t)

)
+ 1,

(5)

where the last inequality follows from the fact that
∣∣A(t)− S(t)

∣∣ ≤ 1.
We now consider two scenarios. First, when the empirical distribution of queue lengths satisfies

π̂(t) ∈ E , from (5) we have:

E
[
Q2

0(t+ 1)−Q2
0(t)
∣∣∣Q0(t), π̂(t) ∈ E

]
≤ 2E

[
Q0(t)(A(t)− S(t))|Q0(t), π̂(t) ∈ E

]
+ 1

≤ − (1− ϕ)gQ0(t) + 1,
(6)

where the second inequality follows from the definition of the event E . Since x2 + y2 ≥ 2xy for any
x, y ∈ R, for any Q0(t) ≥ 1 we have

Q0(t+ 1)−Q0(t) ≤
Q2

0(t+ 1)−Q2
0(t)

2Q0(t)
.

Taking expectations on both sides of the above and applying (6) yields that for any Q0(t) ≥ 1,

E
[
Q0(t+ 1)−Q0(t)

∣∣∣Q0(t), π̂(t) ∈ E
]
≤ −1

2
(1− ϕ)g +

1

2Q0(t)
.

As a result, when Q0(t) ≥ 2
(1−ϕ)g ,

E
[
Q0(t+ 1)−Q0(t)

∣∣∣Q0(t), π̂(t) ∈ E
]
≤ −1

4
(1− ϕ)g .

On the other hand, since the queue length changes by at most one per period, we have

E
[
Q0(t+ 1)−Q0(t)

∣∣∣Q0(t), π̂(t) /∈ E
]
≤ 1 .

Applying Lemma A.5 with Lyapunov function L(Q(t)) = Q0(t) (note that Lemma A.1 implies
E[Q0(∞)] < ∞) and constants γ = 1

4(1 − ϕ)g, B = 2
(1−ϕ)g , δ = 1, and νmax = max |Q0(t + 1) −

Q0(t)| = 1 yields the desired result:

P
(
Q0(∞) >

2

(1− ϕ)g
+ 2m

)
≤

(
1

1 + 1
4(1− ϕ)g

)m+1

+

(
4

(1− ϕ)g
+ 1

)
P
(
π̂ /∈ E

)
.

Lemma A.5 (Lemma 10 of Liu et al. 2022). Let X(t) ∈ X be a positive recurrent Markov chain
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with a countable state space X and transition probability p(x,x′) = P
[
X(t + 1) = x′∣∣X(t) = x

]
,

and X(∞) denote the Markov chain in the stationary distribution. Additionally, let L(·) : X → R+

be a non-negative function (called Lyapunov function) with E
[
L(X(∞))

]
< ∞. Define the drift of

L(·) at state x ∈ X as

▽L(x) = E
[
L
(
X(t+ 1)

)∣∣X(t) = x
]
− L(x).

Suppose that there exists a subset E ⊆ X and constants γ > 0, B ≥ 0 and δ ≥ 0 such that:

(i) ▽L(x) ≤ −γ when L(x) > B and x ∈ E; and

(ii) ▽L(x) ≤ δ when L(x) > B and x /∈ E.

Then, for any integer m ∈ N, we have

P
[
L
(
X(∞)

)
> B + 2νmaxm

]
≤
(

νmax

νmax + γ

)m+1

+

(
δ

γ
+ 1

)
· P
[
X(∞) /∈ E

]
,

where νmax ≜ supx,x′∈X :p(x,x′)>0

∣∣L(x′) − L(x)
∣∣ denotes the largest possible change of the function

L(·) in a transition.

B Proof of Lemma 4.2: Optimal Policy of (2)

In this proof, we focus on an equivalent embedded discrete-time model of a server’s problem, where
in each period, either a job or a capacity unit arrives, with probability λ

1+λ and 1
1+λ , respectively.

The decisions in period t are: (a) when a job arrives, we let Xt = 1 if the server relocates the job
to the shared pool and Xt = 0 if the server adds the job to its queue; (b) when a capacity unit
arrives, we let Yt = 1 if the server offers help to the shared pool, Yt = 0 if the server serves a job
from its queue, and Yt = ∅ if the server opts to be idle.

B.1 Lagrangian Relaxation of (2)

We first introduce a Lagrangian relaxation to (2), which is the key to our proof. Specifically, we
dualize the flow balance constraint of the tokens in (2) (or equivalently, (3)) via a dual variable
µ ∈ R. We denote the Lagrangian relaxation by V FLR(µ), which is provided in (7).

V FLR(µ) = min
π∈Π

∑
q∈N

{
q

1 + λ
·pπ(q)+c·Pπ

(
q, Y = 0

)
+ϕ·(c−µ)·Pπ

(
q, Y = 1

)
+(w+µ)·Pπ

(
q,X = 1

)}
,

(7)
In (7), pπ(q) represents the stationary distribution of the server’s queue length, and Pπ(q,X) and
Pπ(q, Y ) the stationary probability of having q jobs in the queue and taking the action X and Y ,
respectively, under policy π. In (7), we no longer require that the expected rates of earning and
spending tokens are equal; instead, we introduce a penalty µ for spending a token and a reward
−µ for earning a token.

The problem V FLR(µ) can be formulated as a one-dimensional DP, where the queue length
q is the state variable. In theory, the queue length q can take any integer; thus, the DP has a
countable state space. However, as we show in Remark B.1, the queue length is bounded from
above under any optimal policy of V FLR(µ) and for any dual variable µ ∈ R. Therefore, without
loss of generality, we can treat V FLR(µ) as a finite-state DP problem. This gets rid of the intricacy
related to analyzing infinite-state average-cost DP problems.
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Remark B.1 (Bounded Queue Length under an Optimal Policy). Suppose the queue length is q and
a job arrives. If the server relocates the job to the shared pool, the cost is µ + w. On the other
hand, if the server adds the job to the queue, the job will wait for at least (q + 1) in expectation
in continuous time before being served, thus incurring an expected holding cost of at least (q + 1).
Therefore, a server that minimizes the time-average cost will always route a job to the shared pool
if q + 1 > µ+ w. Consequently, the queue length will be no longer than max {0, ⌊µ+ w⌋}.

Since every feasible policy to (2) is feasible to (7) and attains an objective that is no larger,
V FLR(µ) ≤ V F for any µ ∈ R. We formally state this weak-duality property in Lemma B.1.

Lemma B.1 (Weak Duality). We have V FLR(µ) ≤ V F for any dual variable µ ∈ R.
Note that V FLR(µ) is a concave function of µ by (7). Therefore, we can solve a convex opti-

mization problem
V FLR ≜ max

µ∈R
V FLR(µ) ≤ V F

to obtain the tightest Lagrangian relaxation bound V FLR. We let µ∗ = argmaxµ∈RV
FLR(µ) denote

an optimal Lagrangian dual variable. Lemma B.2 shows that strong duality holds.

Lemma B.2 (Strong Duality). The problem (2) and its Lagrangian relaxation (7) have the following
relationship.

1. Strong duality holds, i.e., V FLR = V F. Moreover, let µ∗ be an optimal dual variable; there

exists an optimal policy π∗ of V FLR(µ∗) that is feasible and optimal to V F.

2. Suppose that a policy π is feasible to V F (i.e., the tokens’ flow balance constraint is satisfied

under policy π) and is optimal to V FLR(µ) with some µ ∈ R. Then, π is an optimal policy of

V F and µ is an optimal dual variable.

3. Let µ∗ be an optimal dual variable. Then, any policy π∗ that is optimal to V F is optimal to

V FLR(µ∗).

Proof. According to Danskin’s Theorem (Proposition 4.5.1 in Bertsekas et al. 2003) and the fact
that randomizing over two optimal policies of (7) is also optimal to (7),13 the sub-differential (i.e.,
set of sub-gradients) of V FLR(µ) at any µ ∈ R, denoted by ∂V FLR(µ), can be expressed as

∂V FLR(µ) =

{∑
q∈N

Pπ
(
q,X = 1

)
− ϕ ·

∑
q∈N

Pπ
(
q, Y = 1

)
: π is an optimal policy of V FLR(µ)

}
.

By the optimality condition of µ∗, we have 0 ∈ ∂V FLR(µ∗). Therefore, there exists an optimal
policy π∗ of V FLR(µ∗) such that

∑
q∈N Pπ∗(

q,X = 1
)
= ϕ ·

∑
q∈N Pπ∗(

q, Y = 1
)
; i.e., policy π∗ is

feasible to (2). As a result,

V FLR =
∑
q∈N

{ q

1 + λ
· pπ∗

(q) + c · Pπ∗(
q, Y = 0

)
+ ϕ · (c− µ∗) · Pπ∗(

q, Y = 1
)
+ (w + µ∗) · Pπ∗(

q,X = 1
)}

=
∑
q∈N

{ q

1 + λ
· pπ∗

(q) + c ·
(
Pπ∗(

q, Y = 0
)
+ ϕ · Pπ∗(

q, Y = 1
))

+ w · Pπ∗(
q,X = 1

)}
≥ V F ≥ V FLR,

(8)

13This is because the Lagrangian problem (7) can be formulated as a linear program.
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where the first equality follows from π∗ being optimal to V FLR(µ∗), the second equality from the fact
that the flow balance constraint of the tokens holds under policy π∗, the first inequality is because
policy π∗ is feasible to (2), and the second inequality follows from the weak duality (Lemma B.1).
Therefore, all of the inequalities in (8) are binding, which implies that strong duality holds and
policy π∗ is optimal to V F.

Bullets 2 and 3 can be easily derived in a similar way using a chain of inequalities analogous to
(8).

Finally, we remark that the Lagrangian relaxation V FLR(µ) can be solved by the following
Bellman equation (9)

v + h(q, 1) =
q

1 + λ
+min

{
h(q + 1), h(q) + w + µ

}
v + h(q, 0) =

q

1 + λ
+min

{
h(q), h(q − 1) + c, h(q) + ϕ(c− µ)

}
, ∀ q ≥ 1

v + h(q, 0) =
q

1 + λ
+min

{
h(q), h(q) + ϕ(c− µ)

}
, q = 0.

(9)

where v = V FLR(µ) denotes the optimal time-average cost, h(q, 1) the differential value function
when there are q jobs and a job arrives, h(q, 0) the differential value function when there are q
jobs and a capacity unit arrives, and h(q) = λ

λ+1h(q, 1) +
1

λ+1h(q, 0) the average differential value
function.

B.2 Case One: w < m(k)

Since 0 ≤ w < m(k) and m(0) = 0, we must have k ≥ 1 and hence ϕ ≤ λk ≤ λ in this case.

B.2.1 The Server’s Dynamics

When a capacity unit arrives, the server offers help when the queue is empty and serves a job from
the queue otherwise – hence, the server never deliberately idles. In addition, the queue length q is
in the interval [0 : k] in the long run. Let πi ≜ P [q = i] denote the stationary probability of having
q jobs in the queue; we have

πi =


λiπ0 i ≤ k − 1,

λi(1− p)π0 i = k,
0 i ≥ k + 1.

The value of p = ϕ−λk+1

λk−λk+1 ∈ [0, 1] ensures that the rates of earning and spending tokens are equal,
i.e.,

π0ϕ = λ
(
πk + πk−1p

)
. (10)

Thus, the policy is feasible to (2). Finally, we have π0 =
1−λ
1−ϕ ∈ [0, 1] by

∑
i≥0 πi = 1.

Under the policy, the expected queue length is

E
[
q
]
=
∑
i≥0

iπi =
1

1− ϕ

(
k∑

i=1

λi − kϕ

)
, (11)

the expected job processing cost is

c · 1

1 + λ
·
[
(1− π0) + π0 · ϕ

]
=

cλ

1 + λ
,
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and the expected waiting cost for jobs routed to the shared pool is

λ

1 + λ
·
(
πk + πk−1p

)
· w = π0 ·

ϕ

1 + λ
· w =

1− λ

1− ϕ
· ϕ

1 + λ
· w,

where the first equality follows from (10). Thus, the expected total cost of the policy is

v ≜
1

1 + λ
· 1

1− ϕ

(
k∑

i=1

λi − kϕ

)
+

cλ

1 + λ
+

1− λ

1− ϕ
· ϕ

1 + λ
· w. (12)

Note that if the server instead operates independently, the expected total cost is 1
1+λ ·

λ
1−λ+

cλ
1+λ ,

where λ
1−λ is the expected queue length of an M/M/1 queue. We have

1

1 + λ
· λ

1− λ
+

cλ

1 + λ
− v ≥ λ1+k

1− λ2
> 0,

where the first inequality follows from w ≤ m(k).

B.2.2 Proof of Case One

We now verify that the policy is optimal to (2) when w < m(k). To do so, since the policy is
feasible to (2), if we can find a dual variable µ such that the policy is optimal to V FLR(µ), then
µ = µ∗ is an optimal dual variable and the policy is optimal to (2) by Lemma B.2 Bullet 2.

Step One: Finding the Dual Variable µ To find an appropriate dual variable µ, note that when
q = k − 1 and a job arrives, the server randomizes between relocating the job to the shared pool
(X = 1) and adding the job to the queue (X = 0). If the policy is optimal to V FLR(µ), then it must
be indifferent between taking X = 0 and X = 1, and we can use this to determine the value of µ.
Specifically, let h(q) denote the average differential value function of the policy in V FLR(µ). The
indifference between the actions X = 0 and X = 1 at q = k − 1 implies that (please refer to (9))

h(k) = h(k − 1) + w + µ. (13)

On the other hand, the Bellman equation of the policy at state q = k is

v + h(k) =
k

1 + λ
+

λ

1 + λ

(
h(k) + w + µ

)
+

1

1 + λ

(
h(k − 1) + c

)
(14)

with v specified in (12). From (12), (13), and (14), we have

µ = c+
m(k)

1− ϕ
− w

1− ϕ
. (15)

Remark B.2. From (15), We have µ > c because w < m(k).

Step Two: Properties of the Differential Value Function Before we verify that the policy is
optimal to the Lagrangian V FLR(µ) with µ specified in (15), we first characterize the policy’s average
differential value function h(q) in the Lagrangian V FLR(µ). These differential value functions h(q)
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can be derived from the policy’s Bellman equations (16) – (18).

v + h(0) =
λ

1 + λ
h(1) +

1

1 + λ

(
h(0) + ϕ(c− µ)

)
, (16)

v + h(q) =
q

1 + λ
+

λ

1 + λ
h(q + 1) +

1

1 + λ

(
h(q − 1) + c

)
, ∀ q ∈ [1 : k − 1], (17)

v + h(q) =
q

1 + λ
+

λ

1 + λ

(
h(q) + w + µ

)
+

1

1 + λ

(
h(q − 1) + c

)
, ∀ q ≥ k − 1. (18)

Note that (17) is the Bellman equation for q ∈ [1 : k − 2], but since h(k − 1) + w + µ = h(k) by
(13), (17) is also valid for q = k − 1. Analogously, (18) is the Bellman equation for q ≥ k, but it is
also valid for q = k − 1 again by (13).

We can derive the values of h(q) from (16) – (18). First, without loss of generality, we can
assume h(0) = 0. Then, from (16), we can obtain h(1) as

h(1) =
(1 + λ)v + ϕ(µ− c)

λ
. (19)

Once we have h(0) = 0 and h(1), we can determine the values of h(q) for q ≤ k from (17) recursively:

h(q) =

(
v + h(q − 1)

)
(1 + λ)− (q − 1)− (h(q − 2) + c)

λ
, ∀ q ∈ [2 : k]. (20)

For example, from (20) we have

h(2) =
(v + h(1))(1 + λ)− 1− c

λ
. (21)

Finally, from (18) we have

h(q) = h(q − 1) + q + λ(w + µ) + c− (1 + λ)v, ∀ q ≥ k − 1. (22)

(20) and (22) imply important structural properties of h(q) as we state in Lemma B.3.

Lemma B.3. Let h(q) be the policy’s average differential value function in the Lagrangian V FLR(µ)
with µ specified in (15), and ∆h(q) = h(q) − h(q − 1) for q ≥ 1 the difference of the differential
values of two adjacent states. Then, ∆h(q) is positive and strictly increasing.

Proof. From (22), when q ≥ k − 1,

∆h(q) = q + λ(w + µ) + c− (1 + λ)v = q + const, ∀ q ≥ k − 1, (23)

which is strictly increasing. Hence, to prove that ∆h(q) is strictly increasing for all q ≥ 1, it suffices
to show that ∆h(q) is concave, i.e., ∆h(q + 1)−∆h(q) ≥ ∆h(q + 2)−∆h(q + 1) for all q ≥ 1.

We now show ∆h(q) is concave. From (20) we have

∆h(q) =
1 + λ

λ
∆h(q − 1)− 1

λ
∆h(q − 2)− 1

λ
, ∀ q ∈ [3 : k].

Hence,

∆h(q) = a
( 1
λ

)q
+ b+

q

1− λ
, ∀ q ≤ k, (24)

where a and b are two constants that depend on the initial values ∆h(1) = h(1) and ∆h(2) = h(2)−
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h(1). To see this, note that an = n
1−λ is a special solution to the sequence an = 1+λ

λ an−1− 1
λan−2− 1

λ ,

and an = a
(
1
λ

)n
+ b is the general solution to the sequence an = 1+λ

λ an−1 − 1
λan−2 because 1

λ and

1 are the roots of the quadratic equation x2 = 1+λ
λ x− 1

λ .
Additionally, we have

a =
(
∆h(2)−∆h(1)− 1

1− λ

)
· λ2

1− λ
= − λk+1

(1− λ)2
< 0

where the second equality follows from (12), (15), (19), and (21). Since a < 0, ∆h(q) is concave for
q ≤ k by (24). Moreover, since ∆h(q) is concave (actually linear) for q ≥ k − 1 by (23), ∆h(q) is
concave for all q ≥ 1. This together with the fact that ∆h(q+1)−∆h(q) = 1 ≥ 0 for all q ≥ k− 1
(equation (23)) implies that ∆h(q) is strictly increasing for all q ≥ 1.

Finally, since ∆h(q) is increasing, ∆h(q) ≥ ∆h(1) = h(1) > 0 for all q ≥ 1, which implies that
h(q) is strictly increasing in q.

Step Three: Verifying Optimality We now verify that the policy is optimal to V FLR(µ) with µ
specified in (15). It suffices to show that the policy attains the minimum in the Bellman equation
(9) with v specified in (12) and h(q) being the average differential value function of the policy.

First, suppose a job arrives. Since ∆h(q) is strictly increasing in q by Lemma B.3 and ∆h(k) =
µ+w by (13), we have that ∆h(q) < µ+w for q ≤ k − 1 and ∆h(q) > µ+w for q ≥ k + 1. Thus,
it is strictly optimal to add the job to the queue when q ≤ k − 2 and strictly optimal to relocate
the job to the shared pool when q ≥ k, and the server is indifferent between the two actions when
q = k − 1.

Next, suppose a capacity unit arrives. Since µ > c by Remark B.2, it is strictly optimal to offer
help when q = 0. When q ≥ 1, since ∆h(q) is increasing in q by Lemma B.3, to ensure that it is
strictly optimal to process a job in the queue, it suffices to check that it is the case when q = 1 –
i.e., h(1) + ϕ(c− µ) > h(0) + c = c. To see this, note that from (12), (15), and (19) we have

h(1) + ϕ(c− µ)− c =
1

λ

[(
(1 + λ)v − cλ

)
+ (1− λ)ϕ(µ− c)

]
> 0.

Remark B.3 (Uniqueness of Optimal Policy). The policy is the unique optimal policy of (2). To
see this, note that by Lemma B.2 Bullet 3, any optimal policy of (2) is optimal to V FLR(µ) with
µ specified in (15). On the other hand, the above discussion indicates that the proposed policy
is the unique optimal policy to V FLR(µ) that satisfies the flow balance constraint of the tokens.
(Note that the differential value functions in (9) are unique up to a constant by Remark B.1 and
Proposition 5.5.1 of Bertsekas (2017).)

Remark B.4. The same proof also indicates that the policy proposed in case one is optimal to (2)
when w = m(k) with k ≥ 1 (hence ϕ ≤ λ). The case of w = m(0) = 0 and k = 0 (hence ϕ > λ)
will be covered in case two (Appendix B.3).

B.3 Case Two: w ≥ m(k)

We now consider the case of w ≥ m(k). Let z ≥ k be an integer that satisfies m(z) ≤ w ≤ m(z+1).
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B.3.1 The Server’s Dynamics

With the policy, the queue length q is in the interval [0 : z] in the long run. The stationary
distribution of the queue length, denoted by πi ≜ P [q = i], satisfies

πi =

{
λiπ0 i ≤ z,
0 i ≥ z + 1.

Hence, π0 = 1−λ
1−λz+1 ∈ [0, 1] by

∑
i≥0 πi = 1. The rates of earning and spending tokens are equal

because

π0 ·
ϕ

1 + λ
· λ

z+1

ϕ
= πz ·

λ

1 + λ
.

Therefore, the policy is feasible to (2).
The expected total cost of the policy with a threshold value z is

v(z) =
cλ

1 + λ
+

1

1 + λ
·

z∑
i=0

iπi + πz ·
λ

1 + λ
· w. (25)

We remark that v(z) ≤ v(z + 1) if and only if w ≤ m(z + 1). The benefit of the policy relative to
operating independently is

cλ

1 + λ
+

1

1 + λ
· λ

1− λ
− v(z) ≥ λ2+z

1− λ2
> 0,

where the first inequality follows from w ≤ m(z + 1).

B.3.2 Proof of Case Two

We now verify that the policy is optimal to (2) when w ≥ m(k). Since the policy is feasible to (2),
analogous to Appendix B.2.2, if we can find a dual variable µ such that the policy is optimal to
V FLR(µ), then µ = µ∗ is an optimal dual variable and the policy is optimal to (2) by Lemma B.2
Bullet 2. In the following, we show that the policy is optimal to V FLR(µ) with µ = c.

Step One: Properties of the Differential Value Function We first characterize the policy’s
average differential value function h(q) in the Lagrangian V FLR(µ = c). These differential value
functions h(q) satisfy the Bellman equations (26) – (28).

v + h(0) =
λ

1 + λ
h(1) +

1

1 + λ
h(0), (26)

v + h(q) =
q

1 + λ
+

λ

1 + λ
h(q + 1) +

1

1 + λ

(
h(q − 1) + c

)
, ∀ q ∈ [1 : z − 1], (27)

v + h(q) =
q

1 + λ
+

λ

1 + λ

(
h(q) + w + c

)
+

1

1 + λ

(
h(q − 1) + c

)
, ∀ q ≥ z, (28)

with v given in (25).
We can derive the values of h(q) from (26) – (28). First, without loss of generality, assume

h(0) = 0. Then, from (26) we have

h(1) =
1 + λ

λ
v. (29)
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Once we have h(0) = 0 and h(1), we can determine the values of h(q) for q ≤ z from (27) recursively:

h(q) =

(
v + h(q − 1)

)
(1 + λ)− (q − 1)− (h(q − 2) + c)

λ
, ∀ q ∈ [2 : z]. (30)

For example, from (30) we have

h(2) =
(v + h(1))(1 + λ)− 1− c

λ
. (31)

Finally, from (28) we have

h(q) = h(q − 1) + q + λw + (1 + λ)c− (1 + λ)v, ∀ q ≥ z. (32)

(30) and (32) imply the same structural properties of h(q) as in Lemma B.3, which we state in
Lemma B.4.

Lemma B.4. Let h(q) be the policy’s average differential value function in the Lagrangian V FLR(µ =
c) and ∆h(q) = h(q) − h(q − 1) for q ≥ 1 the difference of the differential values of two adjacent
states. Then, ∆h(q) is positive and strictly increasing.

Proof. From (32), when q ≥ z,

∆h(q) = q + λw + (1 + λ)c− (1 + λ)v = q + const, ∀ q ≥ z, (33)

which is strictly increasing. Thus, to prove that ∆h(q) is strictly increasing for all q ≥ 1, it suffices
to show that ∆h(q) is concave, i.e., ∆h(q + 1)−∆h(q) ≥ ∆h(q + 2)−∆h(q + 1) for all q ≥ 1.

We now show ∆h(q) is concave. Note that from (30) we have

∆h(q) =
1 + λ

λ
∆h(q − 1)− 1

λ
∆h(q − 2)− 1

λ
, ∀ q ∈ [3 : z].

Hence,

∆h(q) = a
( 1
λ

)q
+ b+

q

1− λ
, ∀ q ≤ z, (34)

where a and b are two constants that depend on the initial values ∆h(1) = h(1) and ∆h(2) = h(2)−
h(1). To see this, note that an = n

1−λ is a special solution to the sequence an = 1+λ
λ an−1− 1

λan−2− 1
λ ,

and an = a
(
1
λ

)n
+ b is the general solution to the sequence an = 1+λ

λ an−1 − 1
λan−2 because 1

λ and

1 are the roots of the quadratic equation x2 = 1+λ
λ x− 1

λ .
Additionally, we have

a =
(
∆h(2)−∆h(1)− 1

1− λ

)
· λ2

1− λ
≤ − λz+2

(1− λ)2
< 0

where the first inequality follows from (25), (29), (31) and the fact that w ≤ m(z + 1). Since
a < 0, ∆h(q) is concave for q ≤ z by (34). Moreover, since ∆h(q) is concave for q ≥ z by (33), and
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additionally,(
∆h(z)−∆h(z − 1)

)
−
(
∆h(z + 1)−∆h(z)

)
= a

[( 1
λ

)z
−
( 1
λ

)z−1
]
+

1

1− λ
− 1

=
λ(1− λ)

1− λz+1
·
(
w −m(z)

)
≥ 0,

∆h(q) is concave for all q. This together with the fact that ∆h(q+1)−∆h(q) = 1 ≥ 0 for all q ≥ z
(equation (33)) implies that ∆h(q) is strictly increasing for all q ≥ 1.

Finally, since ∆h(q) is increasing, ∆h(q) ≥ ∆h(1) = h(1) > 0 for all q ≥ 1, which implies that
h(q) is strictly increasing in q.

Step Two: Verifying Optimality We now verify that the policy is optimal to V FLR(µ = c). It
suffices to show that the policy attains the minimum in the Bellman equation (9) with the value of
v in (25) and h(q) being the average differential value function of the policy.

First, suppose that a capacity unit arrives. When q = 0, since µ = c, the server is indifferent
between offering help and being idle, whereas offering help with probability λ1+z/ϕ ensures that
the tokens’ flow balance constraint holds and hence the policy is feasible to (2). When q ≥ 1, we
show that it is optimal to serve a job from the queue. Since ∆h(q) is increasing in q by Lemma B.4,
it suffices to verify that it is so when q = 1 – i.e., h(1) ≥ h(0) + c = c. To see this, note that from
(25) and (29), we have

h(1)− c =
1 + λ

λ
v − c ≥ 1− λz

1− λ
≥ 0,

where the first inequality follows from w ≥ m(z). Particularly, if w > m(z), it is strictly optimal
to serve a job from the queue for any q ≥ 1.

Next, suppose that a job arrives. Since ∆h(q) is increasing in q by Lemma B.4, it suffices to
check that (i) when q = z, it is optimal to relocate the job to the shared pool, and (ii) when q = z−1,
it is optimal to add the job to the queue. To verify (i), we show that h(z+1) ≥ h(z)+w+ c. Note
that from (33), we have

h(z + 1)−
(
h(z) + w + c

)
= (z + 1) + λc− (1 + λ)v − (1− λ)w =

1− λ

1− λz+1

(
m(z + 1)− w

)
≥ 0.

In particular, when w < m(z + 1), it is strictly optimal to relocate the job to the shared pool. To
verify (ii), we show that h(z − 1) + w + c ≥ h(z). Again from (33), we have

h(z)−
(
h(z − 1) + w + c

)
= z + λc− (1 + λ)v − (1− λ)w =

1− λ

1− λz+1

(
m(z)− w

)
≤ 0.

In particular, when w > m(z), it is strictly optimal to add the job to the queue.

Remark B.5 (Uniqueness of Optimal Policy). Analogous to Remark B.3, the policy is the unique
optimal policy of (2) when w ∈

(
m(z),m(z + 1)

)
for any z ≥ k. To see this, note that by Lemma

B.2 Bullet 3, any optimal policy of (2) is optimal to V FLR(µ = c). On the other hand, the above
discussion indicates that the proposed policy is the unique optimal policy to V FLR(µ = c) that
satisfies the flow balance constraint of the tokens.
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B.4 Uniqueness of the Optimal Policy

We denote the proposed policy by π∗(w) when w ∈ R+ \
{
m(z) : z ≥ k

}
. From Remarks B.3 and

B.5, π∗(w) is the unique optimal policy of (2) for any w ∈ R+ \
{
m(z) : z ≥ k

}
.

When w = m(z) with some integer z ≥ k, let π∗(w+) and π∗(w−) be the unique optimal policy
of (2) when w ∈

(
m(z),m(z + 1)

)
and w ∈

(
m(z − 1),m(z)

)
, respectively. From Remark B.4 and

Appendix B.3, both π∗(w+) and π∗(w−) are optimal to (2). Moreover, since problem (2) can be
formulated as a linear program (3), randomizing over the two optimal policies π∗(w+) and π∗(w−)
is also optimal to (2).

Let Π∗(w) denote the set of optimal policies of (2) when the waiting time of a job in the shared

pool is w ≥ 0. From above, Π∗(w) =
{
π∗(w)

}
for any w ∈ R+ \

{
m(z) : z ≥ k

}
and Π∗(w) ⊇{

απ∗(w+) ⊕ (1 − α)π∗(w−) : α ∈ [0, 1]
}

for any w = m(z) with z ≥ k, where απ1 ⊕ (1 − α)π2

with probability α and policies π1 and π2 denotes the randomized policy that implements policy
π1 with probability α and policy π2 with probability 1− α. We now show that

Π∗(w) =
{
απ∗(w+)⊕ (1− α)π∗(w−) : α ∈ [0, 1]

}
, ∀ w = m(z) and z ≥ k,

i.e., the set of optimal policies is the mixing of the two extreme optimal policies π∗(w+) and
π∗(w−).

To see this, note that we can re-formulate problem (2) as (35),

V F(w) = min
r∈[0, λ

1+λ ]

{
min

π∈Π(r)

Eπ[q]

1 + λ
+ rw +

cλ

1 + λ

}
(35)

where r ∈
[
0, λ

1+λ

]
denotes the time-average rate of requesting help, Π(r) the set of policies that

are feasible to (2) (i.e., the flow balance constraint of the tokens holds) while maintaining a steady-
state requesting help rate of r, and Eπ[q] the expected queue length in the stationary distribution
of policy π. In (35), the outer problem selects an optimal requesting-help rate r. When a rate r
is selected, the time-average waiting cost for jobs routed to the shared pool is a fixed constant rw.
In addition, the time-average job processing cost is cλ

1+λ for any policy that is feasible to (2). This
is because, by the flow balance constraint of the tokens, the number of jobs routed to the shared
pool per unit of time (which equals the rate of spending tokens) equals the number of jobs the
server serves from the shared pool per unit of time (which equals the rate of earning tokens) in the
long-run average. Thus, the only component in the objective that is variable is the holding cost for
jobs in the queue, and the inner problem selects an optimal policy π ∈ Π(r) to minimize it.

Let R∗(w) denote the set of optimal requesting-help rates in (35) for a given value of w ≥ 0,
and r(π) the steady-state rate of requesting help under a policy π. Note that since the objective
of (35) has increasing differences in r and w, by the theory of monotone comparative statics (e.g.,
Milgrom and Shannon 1994, Topkis 1998, and Sarver 2022), the set R∗(w) is decreasing in w in the
strong set order (Section 1.2 of Sarver 2022).

Now suppose that w = m(z) and z ≥ k. Since π(w−) is the unique optimal policy of V F(w′) for
any w′ ∈

(
m(z−1),m(z)

)
and π(w+) the unique optimal policy of V F(w′) for any w′ ∈

(
m(z),m(z+

1)
)
, we have R∗(w′) =

{
r(π(w−))

}
for any w′ ∈

(
m(z−1),m(z)

)
and R∗(w′) =

{
r(π(w+))

}
for any

w′ ∈
(
m(z),m(z+1)

)
. As a result, R∗(w) ⊆

[
r (π(w+)) , r (π(w−))

]
by the property of the strong

set order. On the other hand, R∗(w) ⊇
[
r (π(w+)) , r (π(w−))

]
because any mixing of π(w−) and
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π(w+) is optimal to V F(w). Therefore, R∗(w) =
[
r (π(w+)) , r (π(w−))

]
and it implies that

Π∗(w) =
{
απ∗(w+)⊕ (1− α)π∗(w−) : α ∈ [0, 1]

}
.

Remark B.6 (Requesting- and Offering-Help Rates Monotone in w). From the above discussion,
the steady-state rates of requesting and offering help under a server’s best-response policy are
decreasing in the shared pool waiting time w in the strong set order. (Note that the steady-state
rate of requesting help is always a fraction ϕ of the steady-state rate of offering help.)

C Proof for Sections 6 and 7

C.1 Proof of Lemma 6.1

In the proof, we let pqs = P
[
Q̄i(∞) = q, S̄i(∞) = s

]
denote the stationary distribution of the

queue-length-token-count pair under policy π̄F and πq = P[Qi(∞) = q] the stationary distribu-
tion of the queue length under policy πF. We prove that the stationary distribution pqs satisfies∑

q≥0 (pq0 + pq,C) ≤ M2
C for some constant M2 that depends only on the values of λ and ϕ.

C.1.1 Case One: ϕ ≥ λ

First, suppose that ϕ ≥ λ. In this case, the Markov chains of the dynamics under policies πF and
π̄F are visualized in Figure 4.

When ϕ ≥ λ, a server that follows policy π̄F requests help for all incoming jobs as long as it has
a token. The stationary distribution satisfies that pq0 = λq · p00 for q ≥ 1, p0s = p00 for s ∈ [1 : C],
and pqs = 0 for all the other states. Thus, from

∑
q,s≥0 pqs = 1 we have p00 =

1−λ
1+C(1−λ) . Therefore,∑

q≥0

(pq0 + pqC) =
2− λ

1− λ
· p00 ≤

2− λ

1− λ
· 1

C
.

The inequality in Lemma 6.1 holds by taking M2 =
2−λ
1−λ .

0

λ

1

(a)

0, 0 0, 1 0, 2 0, 3 0, 4

1, 0

2, 0

3, 0

λ λ λ λ

λ λ λ λ

λ

λ

λ

λ

(b)

Figure 4: Markov chains when ϕ ≥ λ. (a) Markov chain of the queue length q under policy πF. (b) Markov
chain of the queue-length-token-count pair (q, s) under policy π̄F. The maximum token count is set at C = 4,
and all unspecified transition rates take the value of one.
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C.1.2 Case Two: ϕ < λ

Secondly, suppose that ϕ < λ. The Markov chains of the dynamics under policies πF and π̄F are
visualized in Figure 5.

Let k ≥ 1 denote the maximum queue length under policy πF, which corresponds to when the
value of ϕ satisfies ϕ ∈ [λk+1, λk). We first show in Lemma C.1 that the stationary probabilities
pks for s ∈ [0 : C] (which represent the probabilities of states in the first row of Figure 5b) have
comparable values.
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1λ

1λ

1(1− p)λ

pλ

1

λ
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0, 0

1, 0
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1, 1
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3, 1
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1, 2

2, 2

3, 2
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1, 3

2, 3

3, 3

0, 4

1, 4

2, 4

3, 4

λ

λ

λ

λ

λ

λ

λ

(1 − p)λ

λ

λ

(1 − p)λ

λ

λ

(1 − p)λ

λ

λ

(1 − p)λ

ϕ ϕ ϕ ϕ

λ λ λ λ

pλ pλ pλ pλ

(b)

Figure 5: Markov chains when ϕ < λ. Specific to this example, the token-earning probability ϕ satisfies

ϕ ∈ [λk+1, λk) with k = 3, and p = ϕ−λk+1

λk−λk+1 ∈ [0, 1). (a) Markov chain of the queue length q under policy πF.
(b) Markov chain of the queue-length-token-count pair (q, s) under policy π̄F. The maximum token count is
set at C = 4, and all unspecified transition rates take the value of one.

Lemma C.1. The stationary probabilities pks are decreasing in s for s ≥ 1, i.e., pk1 ≥ pk2 ≥ · · · ≥
pkC . Moreover, the minimum probability pkC satisfies pkC ≥ c · pk0 for some constant c > 0 that
depends only on the values of λ and ϕ.

We prove Lemma C.1 in Appendix C.1.3. Lemma C.1 directly implies Lemma 6.1. To see this,
first note that since

∑C
s=0 pks ≤ 1, we have pk0 ≤ 1

c ·
1
C by Lemma C.1.

Secondly, we have pq0 ≤ c1(λ, ϕ) · pk0 for all q ≤ k and some constant c1(λ, ϕ) that depends
only on the values of λ and ϕ. This is because pq0 ≤ 1+λ

λ pq+1,0 ≤ (1+λ
λ )k−qpk,0 for any q ≤ k − 1,

where the first inequality follows from the flow balance equation at state (q + 1, 0) and the second
inequality from recursion.

Analogously, we have pqC ≤ c2(λ, ϕ) · pk0 for all q ≤ k and some constant c2(λ, ϕ) that depends
only on the values of λ and ϕ. To see this, first note that pkC ≤ pk1 ≤ 1+λ

λ pk0, where the
first inequality follows from Lemma C.1 and the second inequality from the flow balance equation
at state (k, 0). Secondly, by the flow balance equations at states (q, C) with q ≤ k, we have
pk−1,C = 1+λ

(1−p)λpkC and pqC ≤ 1+λ
λ pq+1,C for q ≤ k − 2.

From the above, we have

∑
q≥0

(pq0 + pq,C) =
k∑

q=0

(pq0 + pq,C) + pk0 ·
λ

1 + λ

≤ pk0 ·
(

λ

1 + λ
+ k · (c1(λ, ϕ) + c2(λ, ϕ))

)
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≤ 1

c
·
(

λ

1 + λ
+ k · (c1(λ, ϕ) + c2(λ, ϕ))

)
· 1

C

where the equality follows from the fact that pk+i,0 = λi · pk,0 for all i ≥ 1. The inequality in

Lemma 6.1 holds by taking M2 =
1
c ·
(

λ
1+λ + k · (c1(λ, ϕ) + c2(λ, ϕ))

)
.

C.1.3 Proof of Lemma C.1

The proof involves tedious algebraic computations. We express all of the stationary probabilities
pqs in terms of the probability pk0. We first consider the case that ϕ ∈ (λk+1, λk) with k ≥ 3. A
visualization of the Markov chain is in Figure 5b.

Step One For any number of tokens s, the flow balance equation at state (q, s) with q ∈ [1 :k− 2]
is

pq,s · (1 + λ) = λ · pq−1,s + pq+1,s, ∀ q ∈ [1 : k − 2]. (36)

Therefore, we have

pq+1,s − pq,s = λ
(
pq,s − pq−1,s

)
= λq

(
p1,s − p0,s

)
, ∀ q ∈ [1 : k − 2]. (37)

Additionally, the general solution to the sequence in (36) is

pq,s = asλ
q + bs, ∀ q ∈ [0 : k − 1], (38)

where as and bs are two constants (whose values are to be determined), because λ and 1 are the
roots of the quadratic equation x2 − (1 + λ)x+ λ = 0.

Step Two We next express the probabilities pk1, pk−1,1 and p00 in terms of pk0 and pk−1,0. In
particular, we have the following equations.

a0 + b0 = p00, (39)

a0λ+ b0 = p10 = p00 · (λ+ ϕ), (40)

pk−1,0 = a0λ
k−1 + b0, (41)

pk0 = λ · (pk−1,0 + pk1), (42)

pk0 + pλ · pk−1,1 = pk−1,0 + λ ·
(
pk−1,0 − pk−2,0

)
= pk−1,0 + λk−1 · (λ+ ϕ− 1) · p00, (43)

where (39) - (41) follow from (38) for states (0, 0), (1, 0), and (k− 1, 0), respectively. (42) and (43)
are the flow balance equations at state (k, 0) and (k−1, 0), respectively. (Note that pk+i,0 = λi ·pk,0
for all i ≥ 1.) Additionally, the second equality in (40) also uses the flow balance equation at state
(0, 0), and the second equality in (43) follows from (37), (39) and (40).

We can express the constants a0 and b0 in terms of p00 using (39) and (40). Then, we can
express p00 in terms of pk−1,0 using (41). Lastly, we can express pk1 in terms of pk0 and pk−1,0

using (42) and pk−1,1 in terms of pk0 and pk−1,0 using (43). In the end, we have pk1
pk−1,1

p00

 =

 1
λ −1

− 1
pλ

1
pλ

(
1 + λk−1(λ+ ϕ− 1)t

)
0 t

 =

(
pk0

pk−1,0

)
(44)
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with t = 1−λ
λk−1(1−λ−ϕ)+ϕ

.

Step Three We next recursively express the probabilities pk,i+1, pk−1,i+1 and p0i in terms of pki,
pk−1,i and p0,i−1 for i ≥ 1. Particularly, we have the following equations.

pk−1,i = aiλ
k−1 + bi, (45)

(ai + bi)(λ+ ϕ) = p0,i−1 · ϕ+ (aiλ+ bi), (46)

p0i = ai + bi, (47)

pki · (1 + λ) = pk,i+1 · λ+ pk−1,i · (1− p)λ, (48)

pki + pλ · pk−1,i+1 = pk−1,i + λ · (pk−1,i − pk−2,i) = pk−1,i + λk−1 · (λ− 1) · ai, (49)

where (45) follows from (38) for state (k− 1, i), (46) from (38) for state (1, i) and the flow balance
equation at state (0, i), (47) from (38) for state (0, i), (48) from the flow balance equation at
state (k, i), and (49) from the flow balance equation at state (k − 1, i), (37), and the fact that
p1i − p0i = ai · (λ− 1) by (38).

We can express the constants ai and bi in terms of p0,i−1 and pk−1,i using (45) and (46). Then,
we can express p0i in terms of p0,i−1 and pk−1,i using (47). Lastly, we can express pk,i+1 in terms
of pki, pk−1,i and p0,i−1 using (48) and pk−1,i+1 in terms of pki, pk−1,i and p0,i−1 using (49). In the
end, we have pk,i+1

pk−1,i+1

p0i

 =


1+λ
λ p− 1 0

− 1
pλ

1
pλ

(
1 + λk−1(λ+ ϕ− 1)t

)
− 1

pλλ
k−1ϕt

0 λ(1−λ)
λϕ+λk(1−ϕ)−λk+1

(λ−λk)ϕ
λϕ+λk(1−ϕ)−λk+1

 =

 pki
pk−1,i

p0,i−1

 , ∀ i ≥ 1, (50)

again with t = 1−λ
λk−1(1−λ−ϕ)+ϕ

.

Step Four From (44) and (50), we can express pkC and pk−1,C in terms of pk0 and pk−1,0. Then,
using the flow balance equation at state (k,C), which is

pkC · (1 + λ) = (1− p)λ · pk−1,C ,

we can express pk−1,0 in terms of pk0. With this, again using (44) and (50), we can express pki for
all i ≥ 1 in terms of pk0. This gives the following expressions: for i ∈ [1 : C], we have

pki = pk0 ·
(λk − ϕ)ϕ · (rC − ri−1)

λk(1− ϕ)ϕ · rC − λ(λk − ϕ)(ϕ− λk+1)
(51)

where

r =
ϕ
(
λ2k+2 + λϕ+ λk(1− λ− λ2 − ϕ)

)
λ(ϕ− λk+1) (λϕ+ λk(1− λ− ϕ))

≥ 1 +
1

λ
≥ 2.

Therefore, the value of pki is decreasing in i. Additionally,

pkC ≥ pk0 ·
(λk − ϕ)

λk(1− ϕ)
·
(
1− 1

r

)
.

Other Cases Following the same approach, we can verify that (51) also holds for the case of
ϕ ∈ (λk+1, λk) with k = 1 or 2. Finally, for the special case of ϕ = λk+1 with some integer k ≥ 1,
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we can follow the same approach and show that pki is constant across i ∈ [1 : C] with

pki = pk0 ·
1− λ

1− λk+1
, ∀ i ∈ [1 : C].

C.2 Proof of Lemma 6.2

For ease of notation, let pqs = P
[
Q̄i(∞) = q, S̄i(∞) = s

]
denote the stationary distribution of the

queue-length-token-count pair under policy π̄F and πq = P[Qi(∞) = q] the stationary distribution
of the queue length under policy πF.

C.2.1 Case One: ϕ ≥ λ

First, suppose that ϕ ≥ λ. In this case, the Markov chains of the dynamics under policies πF and
π̄F are visualized in Figure 4.

When ϕ ≥ λ, the server requests help for all incoming jobs under policy πF. Therefore, we have
π0 = 0, E[Qi(∞)] = 0, P[Xi(∞) = 1] = λ, and P[Yi(∞) = 1] = λ

ϕ .
On the other hand, a server that follows policy π̄F requests help for all incoming jobs as long

as it has a token. The stationary distribution satisfies that pq0 = λq · p00 for q ≥ 1, p0s = p00 for
s ∈ [1 :C], and pqs = 0 for all the other states. Thus, from

∑
q,s≥0 pqs = 1 we have p00 =

1−λ
1+C(1−λ) .

Therefore,

E[Q̄i(∞)] =
∑
q≥0

q · pq0 = p00 ·
λ

(1− λ)2
=

λ

1− λ
· 1

1 + C(1− λ)
,

P[X̄i(∞) = 1] = λ ·
C∑

s=1

p0s = λ · C(1− λ)

1 + C(1− λ)
,

P[Ȳi(∞) = 1] =
λ

ϕ
·
C−1∑
s=0

p0s =
λ

ϕ
· C(1− λ)

1 + C(1− λ)
.

Thus, Lemma 6.2 holds with proper choices of the constants M3, M4, and M5.

C.2.2 Case Two: ϕ < λ

Next, suppose that ϕ < λ. The Markov chains of the dynamics under policies πF and π̄F are
visualized in Figure 5.

Let hq ≜
∑C

s=0 pqs denote the marginal probability of having q jobs under policy π̄F, for all
q ≤ k. By the flow balance equation for the set of states

{
(q, s) : s ≤ C

}
for any q ≤ k, we have

h0λ = h1,

h1λ = h2,

· · ·
hk−2λ = hk−1,

hk ≥ hk−1 · (1− p)λ ≥ (hk−1 − pk−1,0) · (1− p)λ ≥ hk − pk0.

(52)

In the last row, the first inequality follows from the fact that pk+i,0 = λi · pk,0 for all i ≥ 1, and the
third inequality from the flow balance equation for the set of states

{
(k, s) : 1 ≤ s ≤ C

}
.
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On the other hand, the dynamics of jobs under policy πF follow a birth-and-death chain process.
Therefore, the stationary distribution satisfies

π0λ = π1,

π1λ = π2,

· · ·
πk−2λ = πk−1,

πk = πk−1 · (1− p)λ.

(53)

From (52), (53), and the fact that
∑k

q=1 πq = 1 and
∑k

q=1 hq ≤ 1, we have

1 ≥ h0
π0

=
h1
π1

= · · · hk−1

πk−1
=

hk−1 · (1− p)λ

πk
≥ hk − pk0

πk
. (54)

Proof of Bullet One First, note that

E
[
Q̄i(∞)

]
=

k∑
q=1

hk · k +
∞∑
i=1

pk+i,0 · (k + i)

=

k−1∑
q=1

hk · k + (hk − pk0) · k +

∞∑
i=0

pk+i,0 · (k + i)

=
k−1∑
q=1

hk · k + (hk − pk0) · k + pk,0 ·
k + λ− kλ

(1− λ)2

≤ E[Qi(∞)] +
M2

C
· k + λ− kλ

(1− λ)2
,

where the third equality follows from the fact that pk+i,0 = pk,0 ·λi for all i ≥ 0, and the inequality

follows from (54) and the facts that E[Qi(∞)] =
∑k

q=1 πq · q and that pk0 ≤ M2
C by Lemma 6.1.

Secondly, we have E[Qi(∞)] ≤ E[Q̄i(∞)]. This is because the policies πF and π̄F both satisfy
the flow balance constraint of the tokens (i.e., the expected rates of earning and spending tokens are
equal) in the fluid mean-field problem. On the other hand, the policy πF minimizes the expected
queue length among all policies that are feasible to the fluid mean-field problem (i.e., the flow
balance constraint of the tokens holds) by Lemma C.2.

Lemma C.2. The policy πF minimizes the expected queue length in the stationary distribution
among all policies that are feasible to the fluid mean-field problem.

Proof. First, all policies adhering to the flow balance constraint of the tokens have the same time-
average job processing cost, which equals c · λ. To see this, note that the rate at which jobs from
the shared pool are served equals the rate of earning tokens (because both equal ϕ times the rate
of offering help to the shared pool). On the other hand, the rate of requesting help equals the rate
of spending tokens. Consequently, by the flow balance of tokens, the rate of jobs being served from
the shared pool equals the rate of routing jobs to the shared pool. This implies that the rate at
which jobs are served equals the job arrival rate λ.

Second, by Corollary 4.3, the policy πF minimizes the time-average total cost among all policies
that satisfy the flow balance constraint of the tokens when the shared pool waiting time w ≤ 1,
particularly when w = 0. In the case of w = 0, the time-average total cost equals the time-average
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job processing cost plus the time-average holding cost for jobs in the queue (which equals the
expected queue length). Therefore, the policy πF has the lowest expected queue length among all
policies that satisfy the flow balance constraint of the tokens (because these policies shared the
same time-average job processing cost, which equals cλ).

Proof of Bullet Two Because stationary probabilities sum up to one, we have

k∑
q=0

hq +
∞∑
i=1

pk+i,0 =
k∑

q=0

hq + pk,0 ·
λ

1− λ
= 1, (55)

where the first equality follows from the fact that pk+i,0 = pk,0 ·λi for all i ≥ 0. Therefore, we have

k−1∑
q=0

hq + (1− p)λ · hk−1 ≥
k∑

q=0

hq − pk,0 = 1−
pk,0
1− λ

≥ 1− M2

(1− λ)C

where the first inequality follows from hk−1 · (1 − p)λ ≥ hk − pk0 by (52), the equality from (55),
and the second inequality from pk,0 ≤ M2

C by Lemma 6.1. Therefore, from (54) we have

h0
π0

=
h1
π1

= · · · hk−1

πk−1
=

hk−1 · (1− p)λ

πk
≥ r(C) ≜ 1− M2

(1− λ)C
. (56)

The stationary rates of requesting help in the original and fluid problems can be expressed as
P[Xi(∞) = 1] = λπk + pλπk−1 and P[X̄i(∞) = 1] = λ(hk − pk0) + pλ(hk−1 − pk−1,0). We first show
that P[X̄i(∞) = 1] ≤ P[Xi(∞) = 1]. This follows because

P[X̄i(∞) = 1] ≤ λ · hk−1 · (1− p)λ+ pλ · hk−1 ≤ λπk + pλπk−1 = P[Xi(∞) = 1],

where the first inequality follows from hk − pk0 ≤ hk−1 · (1− p)λ by (52) and the second inequality
from (54).

On the other hand, from (56) and the fact that hk ≥ hk−1 · (1− p)λ by (52), we have

P[X̄i(∞) = 1] ≥ P[Xi(∞) = 1] · r(C)− λ · pk0 − pλ · pk−1,0.

Thus, P[Xi(∞) = 1] ≤ P[X̄i(∞) = 1]+ M4
C for some constant M4 by Lemma 6.1 and the expression

of r(C).

Proof of Bullet Three Since the policies πF and π̄F are both feasible to the fluid mean-field
problem, we have P[X̄i(∞) = 1] = ϕ · P[Ȳi(∞) = 1] and P[Xi(∞) = 1] = ϕ · P[Yi(∞) = 1].
Therefore, Bullet Three follows directly from Bullet Two.

C.3 Proof of Proposition 6.3

The proof is analogous to the proof of Proposition 4.4 (Appendix A.3) with small modifications.

C.3.1 Uniform Bound on the Expected Shared Pool Queue Length E
[
Q̄i(∞)

]
We prove that the expected shared pool queue length is uniformly bounded from above by a constant
that depends only on the values of λ and ϕ for any number of servers N and token-amount upper
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bound value C. Following the proof of Proposition 4.4, it suffices to show that Lemmas A.1 and
A.3 remain valid for the tail probability of shared pool queue length Q̄i(∞) in the original problem.

Validity of Lemma A.1 To verify that Lemma A.1 also holds for Q̄i(∞), we consider the same
auxiliary system as in Appendix A.3.6. Specifically, the auxiliary system mimics the queueing
process in the original problem with the only difference that, in auxiliary system, when a server
i offers help, the provided capacity unit can only serve a job in the shared pool that came from
server i. We again let Zi(t) denote the number of jobs of server i in the auxiliary system in period
t. To verify Lemma A.1, it suffices to confirm that Lemma A.4 remains valid for any token-amount
upper bound value C, which we do now.

Denote by Si(t) the number of tokens owned by server i and Q0i(t) the number of jobs in the
shared pool that come from server i, in the auxiliary system at time t. Assume, without loss of
generality, that the shared pool is initially empty at time zero; hence, Q0i(0) = 0. Lemma C.3
provides an important observation: for each server, the number of tokens plus the number of jobs
in the shared pool cannot surpass the token-amount upper bound C; that is, Si(t) +Q0i(t) ≤ C at
any time t ≥ 0.

Lemma C.3. We have Si(t) +Q0i(t) ≤ C at any time t ≥ 0.

Proof. We examine the embedded discrete-time model and prove the inequality by induction. First,
the inequality holds at t = 0 because Si(0) ≤ C and Q0i(0) = 0. Now, suppose that the inequality
holds in period t− 1; we show that it also holds in period t. Note that Si(t) or Q0i(t) can change
value only when the server requests or offers help. First, suppose a job arrives, and the server
requests help in period t. In this case, Si(t) decreases by one and Q0i(t) increases by one. Thus,
the summation does not change, and the inequality still holds.

Secondly, suppose a capacity unit arrives, and the server offers help in period t. If Q0i(t−1) ≥ 1,
then Q0i(t) decreases by one and Si(t) increases by at most one; thus, the inequality still holds.
Otherwise, if Q0i(t − 1) = 0, then the inequality also holds in period t because Si(t) + Q0i(t) =
Si(t) ≤ C.

According to Lemma C.3, if the server has a job in the shared pool (i.e., Q0i ≥ 1), then
Si ≤ C − 1, i.e., the token amount has not reached its upper bound.

First, suppose that ϕ ≤ λ. In this case, the server in the auxiliary system serves a job with
certainty when it has an affiliated job (i.e., Zi ≥ 1) and a capacity unit arrives. Consequently, the
dynamics of Zi(t) is an M/M/1 queue with a job arrival rate of λ and a job processing rate of one,
regardless of the value of C.

Secondly, suppose that ϕ > λ. In this case, when a capacity unit arrives, the server serves a job
from its queue if one is present; otherwise, if there is a job in the shared pool (i.e., Q0i ≥ 1), the
server serves a job from the shared pool with probability λ/ϕ. Hence, the serving rate is at least λ/ϕ
as long as Zi(t) ≥ 1. Consequently, the dynamics of Zi(t) is first-order stochastically dominated
by an M/M/1 queue with a job arrival rate of λ and a job processing rate of λ/ϕ regardless of the
value of C.

Thus, Lemma A.4 is still valid, and Lemma A.1 continue to hold for the original problem when
servers follow the FMFE policy π̄F.

Validity of Lemma A.3 Let g(C) > 0 denote the steady-state rate of offering help when the server
follows the FMFE policy π̄F and the token-amount upper bound is C, and g = minC≥1 g(C) > 0
the lower bound on the steady-state rate of offering help. Note that g > 0 because g(C) > 0 for
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any value of C and limC→∞ g(C) = P[Yi(∞) = 1] > 0 by Lemma 6.2, where P[Yi(∞) = 1] is the
steady-state offering help rate under the FMFE policy πF in the fluid mean-field problem.

We define the high-probability event E in the original problem analogous to the one for the fluid
mean-field problem in Appendix A.3.2. Specifically, let πqs denote the stationary probability that
a server has q jobs in the queue and s tokens at hand. Additionally, let Aqs and Sqs denote the
probabilities that a server requests and offers help, respectively, when it has q jobs and s tokens.
Since the steady-state rate of requesting help is ϕ times the steady-state rate of offering help (this
is because the expected rates of earning and spending tokens are equal under the policy π̄F) and
the steady-state offering help rate is at least g, we have∑

qs

πqsAqs −
∑
qs

πqsSqs ≤ −(1− ϕ)g .

Denote by π̂ the empirical distribution of queue lengths and token amounts of the servers, i.e.,

π̂qs(t) ≜
1

N

N∑
i=1

1
{
Qi(t) = q, Si(t) = s

}
.

We define the high-probability set E as follows.

E ≜

{
π̂ :
∑
q

π̂qsAqs −
∑
q

π̂qsSqs ≤ −1

2
(1− ϕ)g

}
.

Following the same proof, Lemma A.2 is still valid. This implies that Lemma A.3 continues to hold
for the original problem with the new high-probability event E .

C.3.2 Uniform Bound on the Long-Run Average Waiting Time w

The long-run average waiting time in the shared pool diminishes at a rate of O
(
1
N

)
, which is uniform

across the token-amount upper bound value C, following the same proof in Appendix A.3.5. This
is because of Little’s law and the fact that the shared pool queue length is uniformly bounded by
a constant, for any number of servers N and token-amount upper bound value C.

C.4 Proof of Lemma 6.4

Suppose all servers follow the FMFE policy π̄F. The time-average total cost of server one comprises
three parts: (i) the job processing cost, (ii) the holding cost for jobs in its queue, and (iii) the
waiting cost for jobs routed to the shared pool.

First, the time-average job processing cost is cλ by symmetry because servers are stochastically
identical and follow the same strategy. Secondly, the time-average holding cost for jobs in the queue,
which equals E

[
Q̄i(∞)

]
, is at most E

[
QF
]
+ M3

C by Lemma 6.2. Finally, let w denote the long-run
average waiting time in the shared pool. The time-average waiting cost for jobs in the shared pool
that come from server one is at most λw, which is no larger than λM7

N by Proposition 6.3.

C.5 Proof of Lemma 6.5

C.5.1 Step One: A Relaxation of Server One’s Problem

The problem faced by server one is a complex, partially observable Markov decision problem because
server one can only infer partial information about the shared pool through its interaction with the
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shared pool. We first derive a relaxation of server one’s problem. This relaxation provides a lower
bound for the original problem faced by server one. Moreover, it has a close connection to the fluid
mean-field problem (2) and thus is much easier to analyze.

As a first step to establishing the relaxation, we show in Lemma C.4 that, in the original problem
of server one, although server one has the flexibility to request help at any time, it is without loss
of optimality to assume that when a capacity unit arrives, the server does not request help until it
has taken action regarding the arriving capacity unit.

Lemma C.4. It is without loss of optimality to assume that in the original problem, when a capacity
unit arrives, the server does not request help before it has taken action regarding the capacity unit.

Proof. Suppose a capacity unit arrives at server one at time t. If server one immediately requests
help, it does not collect additional information about the current state of the shared pool. Therefore,
it does not enhance the decision regarding the capacity unit, which must be done now. On the
contrary, if server one takes action regarding the capacity unit first, it can possibly gain immediate
information about the shared pool (for example, if server one offers help without incurring a job
processing cost, it indicates that the shared pool is currently empty). This additional information
can help with the decision regarding requesting help. Hence, it is without loss of optimality to
assume that when a capacity unit arrives, server one takes action regarding the said capacity unit
first and then considers the option of requesting help (possibly after gathering more information
about the shared pool).

We now introduce a relaxation to server one’s problem. The relaxation endows server one with
an additional power to empty the shared pool at the end of every interaction (i.e., requesting or
offering help) with the shared pool. Specifically, when server one offers help, it serves a job from
the shared pool if one is present; after that, all remaining jobs in the shared pool are cleared. In
addition, when server one requests help, all jobs in the shared pool, including the job the server has
just routed to the shared pool, are immediately cleared; hence, the relocated job incurs no waiting
cost. Finally, we impose that, when a capacity unit arrives, server one can only request help once
it has taken action on the capacity unit; from Lemma C.4, this is without loss of optimality in
the original problem. As a result, the shared pool is cleared whenever server one requests or offers
help in the relaxation. As we show Lemma C.5, it will be futile for server one to try to acquire
additional information by strategically altering the timing of requesting help. Consequently, server
one requests help only when a job arrives and only requests help for the incoming job.

Lemma C.5. In the relaxation, it is optimal for server one to request help only when a job arrives,
and only request help for the incoming job.

Proof. Note that in the relaxation, server one’s assessment of the state of the shared pool at
the next arrival (of either a job or capacity unit) is independent of when server one requests
help. This is because the shared pool is emptied whenever the server requests help. Additionally,
conditioning on server one requesting help at a given point, the time till the next arrival follows
an exponential distribution with a rate parameter of 1 + λ due to the memoryless property of the
exponential distribution. Hence, server one cannot acquire more information about the shared pool
by strategically timing requesting help. As a result, if server one would like to request help for a
job, it is optimal to do so when it arrives to eliminate unnecessary job holding costs.

C.5.2 Step Two: Bounding the Shared Pool Non-Emptiness Probability

Because servers two to N follow an oblivious strategy π̄F, the dynamics of these N − 1 servers are
independent. Without loss of generality, we assume that servers two to N are in the stationary
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distribution at time zero; consequently, they are in the stationary distribution at any time t ≥ 0.
We now consider the scenario that a capacity unit arrives at server one at time τ . When server

one takes action regarding the capacity unit, it needs to assess the probability that the shared pool
is non-empty, i.e., Q0(τ) ≥ 1, which corresponds to experiencing a job processing cost of c if server
one offers help to the shared pool.

Let h(τ) < τ denote the time of the last interaction between server one and the shared pool –
i.e., either requesting or offering help. The server’s assessment of the probability that Q0(τ) ≥ 1
depends only on the time difference τ − h(τ). This is because the shared pool is emptied at time
h(τ), and after that, the shared pool interacts only with servers two to N .

We now bound the probability that the shared pool is non-empty conditioning on the length of
the time difference τ −h(τ). In particular, as we show in Lemma C.6, as long as the time difference
is not very tiny, the probability that the shared pool is non-empty is close to the value of ϕ.

Lemma C.6. For any constants ∆ ≥ 1
1+λ

1
N1−δ and δ ∈ (0, 1), we have

P
[
Q0(τ) ≥ 1

∣∣τ − h(τ) = ∆
]
≥ ϕ−

c
(
λ, ϕ, δ

)
N1−δ

where c
(
λ, ϕ, δ

)
is a constant that depends only on the values of λ, ϕ and δ.

We prove Lemma C.6 in Appendix C.5.4 using a coupling method. Lastly, let h̄(τ) < τ denote
the time of the most recent arrival (of either a job or capacity unit) before time τ . Clearly,

τ − h̄(τ) ≤ τ − h(τ) (57)

because server one takes actions only when a job or capacity unit arrives (Lemma C.5).
The time difference τ − h̄(τ) between two adjacent arrivals follows an exponential distribution

with a rate parameter of 1 + λ. Hence,

P
[
τ − h(τ) ≤ 1

1 + λ

1

N1−δ

]
≤ P

[
τ − h̄(τ) ≤ 1

1 + λ

1

N1−δ

]
≤ 1

N1−δ
(58)

where the first inequality follows from (57) and the second inequality from the cumulative distri-
bution function of the exponential distribution and the fact that 1− exp(−x) ≤ x for any x ∈ R.

C.5.3 Step Three: Bounding the Optimal Value of the Relaxation

To bound the optimal value of the relaxation of server one’s problem, we consider an alternative
system with the only difference that, when server one offers help, it experiences a job processing
cost of c with a constant probability ϕ. However, every time a capacity unit arrives at a time τ ,
server one is compensated based on the length of the inter-arrival time ∆(τ) ≜ τ− h̄(τ), where h̄(τ)
is the time of the most recent arrival (of either a job or capacity unit) before time τ . Specifically,

the server is compensated with c·ϕ if ∆(τ) ≤ 1
1+λ

1
N1−δ and with c· c(λ,ϕ,δ)

N1−δ otherwise, where c(λ, ϕ, δ)
is the constant specified in Lemma C.6.

Lemma C.7 shows that server one has a lower expected time-average cost in the alternative
system than in the relaxation. Thus, it suffices to bound the expected cost in the alternative
system from below. First, we remark that the inter-arrival time ∆(τ) is beyond the control of
server one. Moreover, since server one experiences a cost of c with a constant probability ϕ when
offering help, the optimization problem server one faces in the alternative system is precisely the
mean-field problem (1) with the shared pool waiting time w = 0. Thus, the minimum time-average
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total cost in the alternative system is bounded from below by the optimal value of the fluid mean-
field problem (which equals cλ + E[QF]) minus the time-average compensation. Specifically, let
A =

{
∆(τ) > 1

1+λ
1

N1−δ

}
denote the event that the inter-arrival time is at least 1

1+λ
1

N1−δ . The
time-average total cost in the alternative system is at least

cλ+ E[QF]− c ·

(
ϕ · P

[
Ac
]
+

c
(
λ, ϕ, δ

)
N1−δ

· P
[
A
])

≥cλ+ E[QF]− c · ϕ+ c(λ, ϕ, δ)

N1−δ

where the inequality follows from the fact that P
[
Ac
]
≤ 1

N1−δ by (58). Finally, taking M8(λ, ϕ, δ) =
c · (ϕ+ c(λ, ϕ, δ)) completes the proof.

Lemma C.7. The optimal value of the alternative system is smaller than that of the relaxation to
server one’s problem.

Proof. It suffices to show that the time-average total cost of any policy is smaller in the alternative
system than in the relaxation. This is due to the fact that the compensation in the alternative
system is more than the augmented cost of offering help in the alternative system. To see this,
suppose a capacity unit arrives at time τ and server one offers help to the shared pool. If event
A =

{
∆(τ) > 1

1+λ
1

N1−δ

}
occurs, then we have τ − h(τ) > 1

1+λ
1

N1−δ by (57). By Lemma C.6, the
difference between the expected cost of offering help in the alternative system and the relaxation is(

cϕ− c ·
c
(
λ, ϕ, δ

)
N1−δ

)
− c · P

[
Q0(τ) ≥ 1

∣∣τ − h(τ)
]
≤ 0.

Therefore, the expected cost of offering help is smaller in the alternative system than in the relax-
ation. Alternatively, suppose event Ac occurs. The expected cost of offering help also is smaller in
the alternative system because

(cϕ− cϕ)− c · P
[
Q0(τ) ≥ 1

∣∣τ − h(τ)
]
≤ 0.

C.5.4 Proof of Lemma C.6

Note that the shared pool is emptied at time h(τ). In the proof, we show that the shared pool
transitions to the stationary distribution by time τ with a high probability (Lemma C.8). In
addition, in the stationary distribution, the shared pool is non-empty with a probability close to ϕ
(Lemma C.9). By combining Lemmas C.8 and C.9, we obtain the desired result.

We focus on the time between h(τ) and τ . Within this time interval, server one has no interaction
with the shared pool. Additionally, servers two to N are in the stationary distribution throughout
because they are assumed so at time zero. We consider an alternative system that contains servers
i ∈ [2 :N ] and the shared pool, and we assume that the system is in the stationary distribution at
time zero. Denote by Q̄0(t) the queue length of the shared pool in the alternative system at time t
and by Q̄0(∞) the queue length of the shared pool in the stationary distribution of the alternative
system. Note that since the alternative system and server one do not interact, the shared pool
queue length in the alternative system is in the stationary distribution in both time h(τ) and τ .

We first bound the total variation distance between the distributions of the shared pool queue

lengths Q0(τ) and Q̄0(τ)
( d
= Q̄0(∞)

)
at time τ in Lemma C.8. Lemma C.8 indicates that Q0(τ)

is in the stationary distribution with a high probability.
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Lemma C.8. Let P denote the distribution of the shared pool queue length Q0(τ) in the original
system at time τ , conditional on the value of the time difference τ −h(τ), and P̄ the stationary dis-
tribution of the shared pool queue length in the alternative system. Suppose that the time difference
τ − h(τ) ≥ 1

1+λ
1

N1−δ ; we have

∣∣∣∣P − P̄
∣∣∣∣

TV
≤ c1

(
λ, ϕ, δ

)
· exp

(
− α1(λ, ϕ) ·N δ/2

)
where c1

(
λ, ϕ, δ

)
is a constant that depends only on the values of λ, ϕ and δ, and α1(λ, ϕ) a constant

that depends only on the values of λ and ϕ.

We prove Lemma C.8 in Appendix C.5.5 by coupling the original and alternative systems and
using a drift analysis. Since∣∣∣∣P[Q0(τ) ≥ 1

∣∣τ − h(τ)
]
− P[Q̄0(∞) ≥ 1]

∣∣∣∣ ≤ max
A

∣∣∣∣P[Q0(τ) ∈ A
∣∣τ − h(τ)

]
− P[Q̄0(∞) ∈ A]

∣∣∣∣
=
∣∣∣∣P − P̄

∣∣∣∣
TV

,

(59)

Lemma C.8 immediately implies that when τ − h(τ) ≥ 1
1+λ

1
N1−δ , we have

P
[
Q0(τ) ≥ 1

∣∣τ − h(τ)
]
≥ P[Q̄0(∞) ≥ 1]− c1

(
λ, ϕ, δ

)
· exp

(
− α1(λ, ϕ) ·N δ/2

)
. (60)

We next show that the stationary probability P[Q̄0(∞) ≥ 1] is close to the token-earning
probability ϕ in Lemma C.9 .

Lemma C.9. We have

P[Q̄0(∞) ≥ 1] ≥ ϕ−
c2
(
λ, ϕ, δ

)
N1−δ

(61)

for some constant c2(λ, ϕ, δ) that depends only on the values of λ, ϕ and δ.

We prove Lemma C.9 in Appendix C.5.6. The proof is analogous to the proof of Lemma C.8
where we couple the alternative system with another auxiliary system to derive the result. Finally,
(60) and (61) imply that there exists a constant c

(
λ, ϕ, δ

)
such that Lemma C.6 holds.

C.5.5 Proof of Lemma C.8

We use a coupling method to prove this. Specifically, we couple the original and alternative systems
together so that servers two to N encounter identical arrival sequences of jobs and capacity units in
both systems. As result, servers two to N take the same actions at the same time in both systems.
This, together with the fact that the shared pool in the original system is emptied at time h(τ),
implies that

Q̄0(t) ≥ Q0(t), ∀ t ∈
(
h(τ), τ

)
,

Moreover, if Q̄0(t) = Q0(t) at some time t ∈
(
h(τ), τ

)
, they continue to be equal at any subsequent

time before time τ . Let
T ≜ inf

{
t > h(τ) : Q̄0(t) = 0

}
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denote the first time that the shared pool in the alternative system becomes empty. From the
above reasoning, if T < τ , then Q̄0(T ) = Q0(T ) = 0 and hence Q̄0(τ) = Q0(τ). Consequently,∣∣∣∣P − P̄

∣∣∣∣
TV

≤ P
[
Q̄0(τ) ̸= Q0(τ)

]
≤ P

[
T − h(τ) ≥ τ − h(τ)

]
, (62)

where the first inequality is because Q̄0(τ)
d
= Q̄0(∞). In the following, we bound the probability

P
[
T − h(τ) ≥ τ − h(τ)

]
from above.

Step One: Bounding the Number of Arrivals from Below We first show that the number of
arrivals at servers two to N in the time interval

(
h(τ), τ

)
is not tiny with a high probability.

Specifically, let H denote the number of arrivals of either jobs or capacity units at servers two to
N within the time interval

(
h(τ), τ

)
. The random variable H ∼ Poisson(λH) follows a Poisson

distribution with mean value λH ≜ (N − 1)(1 + λ)
(
τ − h(τ)

)
≥ N−1

N1−δ , where the inequality follows

from the assumption that τ−h(τ) ≥ 1
1+λ

1
N1−δ . By the concentration inequality for Poisson random

variables (Lemma C.10), we have

P
[
H ≤ N δ/2

]
≤ c3(δ) · exp

(
−N δ

)
(63)

where c3(δ) is a constant that depends only on the value of δ. To see this, take λ = λH and
u = 1−N δ/2/λ = 1− o(1) in Lemma C.10 and note that limu→1 g(u) = 1. The result follows from
the fact that λH ≥ N−1

N1−δ = Θ
(
N δ
)
.

Step Two: Defining a “Good” Typical Event Secondly, we specify a “good” event that happens
with a high probability. To do so, it is convenient to consider the equivalent discrete-time model,
where each period corresponds to the ℓ-th arrival for ℓ ∈ [H]. Specifically, suppose that the ℓ-th
arrival (of either a job or capacity unit) arrives at time tℓ, with t0 ≜ h(τ) < t1 < · · · < tH < τ .
Let Q̄0[ℓ] ≜ Q̄0(tℓ) denote the queue length of the shared pool at time tℓ (after servers have taken
action) in the alternative system.

For each server i, we let binary variable Ai[ℓ] (and Si[ℓ]) indicate if server i requests help (and
offers help) in period ℓ. Additionally, let A[ℓ] ≜

∑
i∈[2:N ]Ai[ℓ] ∈ {0, 1} and S[ℓ] ≜

∑
i∈[2:N ] Si[ℓ] ∈

{0, 1} indicate if there is any request or provision of help in period ℓ. We have

Q̄0[ℓ+ 1] =
(
Q̄0[ℓ] +A[ℓ]− S[ℓ]

)+
, ∀ ℓ ∈

[
0 :H − 1

]
.

Since servers two toN are in the stationary distribution at any time tℓ, E
(
A[ℓ]−S[ℓ]

)
= −(1−ϕ)g

with g > 0 being the rate of offering help in the stationary distribution. Additionally, let π̂ℓ denote
the empirical distribution of queue lengths and token amounts of servers two to N at time tℓ, i.e.,

π̂ℓ(q, s) ≜
1

N − 1

N∑
i=2

1

{
Qi(tℓ) = q, Si(tℓ) = s

}
,

and Eℓ denote the event that the average drift in period ℓ is no larger than −1
2(1− ϕ)g, i.e.,

Eℓ ≜

{
π̂ℓ :

∑
q

π̂ℓ(q, s)Aqs −
∑
q

π̂ℓ(q, s)Sqs ≤ −1

2
(1− ϕ)g

}
,
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where Aqs and Sqs are the probabilities that a server requests and offers help, respectively, when it
has q jobs and s tokens. Since the dynamics of servers i ∈ [2 :N ] are independent, by Hoeffding’s
inequality, we have (please refer to Lemma A.2)

P
(
Ec
ℓ

)
≤ exp

(
−1

8
(1− ϕ)2g2(N − 1)

)
. (64)

Finally, since Q̄0[0] ≜ Q̄0

(
h(τ)

)
is in the stationary distribution, from Lemma A.3 we have

P
(
Q̄0[0] >

1

4
(1− ϕ)gN δ/2

)
≤ c4(λ, ϕ) · exp

(
− α2(λ, ϕ) ·N δ/2

)
(65)

for some constants c4(λ, ϕ) and α2(λ, ϕ) that depend only on the values of λ and ϕ.
We now define a “good” event A with

A ≜
{
H > N δ/2

}
∩
{
∩ℓ≤Nδ/2 Eℓ

}
∩
{
Q̄0[0] ≤

1

4
(1− ϕ)gN δ/2

}
.

From (63) - (65) and the union bound, we have

P
(
Ac
)
≤ c3(δ) · exp

(
−N δ

)
+N δ/2 · exp

(
−1

8
(1− ϕ)2g2(N − 1)

)
+ c4(λ, ϕ) · exp

(
− α2(λ, ϕ) ·N δ/2

)
≤ c5(λ, ϕ, δ) · exp

(
− α2(λ, ϕ) ·N δ/2

)
(66)

for some constant c5(λ, ϕ, δ) that depends only on the values of λ, ϕ, and δ. Thus, event A happens
with a high probability.

Step Three: A Drift Analysis Finally, we consider a stochastic process Q̃0[ℓ] = Q̄0[0]+
∑ℓ

r=1

(
A[r]−

S[r]
)
with ℓ ≤ H. Conditioning on event A, we have

E
(
Q̃0[ℓ+ 1] +

1

2
(1− ϕ)g(ℓ+ 1)

∣∣∣Q̃0[ℓ]
)
≤ Q̃0[ℓ] +

1

2
(1− ϕ)gℓ.

Thus, Q̃0[ℓ] +
1
2(1− ϕ)gℓ a super-martingale. From Azuma’s inequality we have

P
(
Q0[ℓ] +

1

2
(1− ϕ)gℓ−Q0[0] ≥ ϵ

)
≤ exp

(
−ϵ2

2ℓ

)
.

By taking ℓ = N δ/2 and ϵ = 1
4(1− ϕ)gN δ/2, and noting that Q0[0] ≤ 1

4(1− ϕ)gN δ/2 given event A,
the above implies that

P
(
Q0

[
N δ/2

]
≥ 0
∣∣∣A) ≤ exp

(
− 1

32
(1− ϕ)2g2N δ/2

)
. (67)
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As a result,

P
[
T − h(τ) ≥ τ − h(τ)

∣∣∣A] ≤ P
[
Q̄0[ℓ] ≥ 1, ∀ i ≤ N δ/2

∣∣∣A]
= P

[
Q̃0[ℓ] ≥ 1, ∀ i ≤ N δ/2

∣∣∣A]
≤ P

[
Q̃0

[
N δ/2

]
≥ 1
∣∣∣A]

≤ exp

(
− 1

32
(1− ϕ)2g2N δ/2

)
,

(68)

where the last inequality follows from (67).
Finally, from (66) and (68) we have∣∣∣∣P − P̄

∣∣∣∣
TV

≤ P
[
T − h(τ) ≥ τ − h(τ)

]
≤ c1(λ, ϕ, δ) · exp

(
− α1(λ, ϕ) ·N δ/2

)
for some constant c1(λ, ϕ, δ) that depends only on the values of λ, ϕ and δ and constant α1(λ, ϕ)
that depends only on the values of λ and ϕ.

Lemma C.10 (Concentration Inequality for Poisson Random Variables). Let X ∼ Poisson(λ) be a
Poisson random variable with mean value λ > 0. We have

P(X ≤ λ(1− u)) ≤ exp(−λg(u))

for any 0 ≤ u < 1, where g(u) = u+ (1− u) ln(1− u).

Proof. For any t ≥ 0, we have

P(X ≤ λ(1− u)) = P
[
exp(−tX) ≥ exp(−tλ(1− u))

]
≤ E

[
exp(−tX)

]
exp(tλ(1− u))

= exp
(
λ(e−t − 1) + tλ(1− u)

)
where the inequality follows from Markov’s inequality and the second equality from the moment
generating function of the Poisson distribution. It turns out that the right-hand side of the second
equality is minimized by setting t = − ln(1 − u), in which case the right-hand side simplifies to
exp(−λg(u)).

C.5.6 Proof of Lemma C.9

We use the same coupling method as in Appendix C.5.5 to prove the result. Specifically, we couple
the alternative system defined in Appendix C.5.4 (labeled as system one in this section) with
another auxiliary system (labeled as system two in this section). We first describe the two systems
below.

System One The alternative system defined in Appendix C.5.4. The system includes servers
i ∈ [2 :N ] and the shared pool. All the N − 1 servers follow the FMFE policy π̄F. We assume that
the system is in the stationary distribution at time zero. We denote the queue length of the shared
pool in this system by Q̄0(t).
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System Two The system includes servers i ∈ [N ] and the shared pool. All the N servers follow
the FMFE policy π̄F. We assume that the system is in the stationary distribution at time zero. We
denote the queue length of the shared pool in this system by Q̃0(t).

Suppose server one in system two offers help at a time τ . Let Q̃0 (τ−) ≜ limt↑τ Q̃0(t) denote
the queue length of the shared pool before server one offers help. Lemma C.11 shows that the
probability that Q̃0 (τ−) is non-zero (thus, server one serves a job when offering help) is ϕ.

Lemma C.11. We have P
[
Q̃0 (τ−) ≥ 1

]
= ϕ.

Proof. This is because all servers are stochastically identical and follow the same strategy π̄F, and
a capacity unit contributed to the shared pool serves a job with probability ϕ in the stationary
distribution by Remark 3.1.

On the other hand, since server one and system one do not interact, we have Q̄0 (τ−)
d
= Q̄0(∞),

i.e., the shared pool in system one is in the stationary distribution. Therefore, to show that the
stationary probability P[Q̄0(∞) ≥ 1] is close to the value of ϕ, it suffices to show that the shared
pool queue lengths in the two systems at time τ are close in terms of the total variation distance.

We couple the two systems together so that servers i ∈ [2 :N ] receive the same arrival sequences
of jobs and capacity units in both systems. As a result, servers i ∈ [2 :N ] take the same actions at
the same time in both systems.

Let h(τ) denote the time of the most recent arrival of either a job or a capacity unit at server
one before time τ . The time difference ∆(τ) = τ − h(τ) follows an exponential distribution with
a rate parameter of 1 + λ. Note that within the time interval

(
h(τ), τ

)
, the shared pool interacts

only with servers two to N in both systems. Let

T1 ≜ inf
{
t > h(τ) : Q̄0(t) = 0

}
denote the first time that the shared pool in system one becomes empty, and

T2 ≜ inf
{
t > h(τ) : Q̃0(t) = 0

}
the first time that the shared pool in system two becomes empty. Finally, let

T ≜ max
{
T1, T2

}
.

Since the two systems are coupled, if T < τ , then Q̄0(T ) = Q0(T ) = 0 and Q̄0(t) = Q0(t) for any
t ∈

[
T, τ

)
. As a result, we have

ϕ− P
[
Q̄0(∞) ≥ 1

]
=P
[
Q̃0(τ−) ≥ 1

]
− P

[
Q̄0(τ−) ≥ 1

]
≤
∣∣∣P[Q̃0(τ−) ≥ 1

]
− P

[
Q̄0(τ−) ≥ 1

]∣∣∣
≤P
[
Q̄0(τ−) ̸= Q̃0(τ−)

]
≤P
[
T − h(τ) ≥ τ − h(τ)

]
,

(69)

where the first inequality follows from Lemma C.11 and Q̄0(τ−)
d
= Q̄0(∞), and the inequalities

follow from the same reasoning for (59) and (62). In the following, we bound the probability
P
[
T − h(τ) ≥ τ − h(τ)

]
from above in the same way as in Appendix C.5.5.
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Step One: Bounding the Number of Arrivals from Below We first show that the number of
arrivals at servers two to N in the time interval (h(τ), τ) is not tiny with a high probability.
Specifically, let H denote the number of arrivals of either jobs or capacity units at servers two to N
in the time interval (h(τ), τ). We first show in Lemma C.12 that the random variable H ∼ Geo

(
1
N

)
follows a geometric distribution with a success probability of 1

N .

Lemma C.12. Let H denote the number of arrivals at servers two to N in the time interval(
h(τ), τ

)
; H follows a geometric distribution with a success probability of 1

N ; i.e., P[H = k] =(
N−1
N

)k 1
N for any integer k ∈ N.

Proof. Since the time difference ∆(τ) = τ − h(τ) follows an exponential distribution with a rate
parameter of 1 + λ, and conditioning on ∆(τ) = x, the number of arrivals H follows a Poisson
distribution with a mean value of (N − 1)(1 + λ) · x, for any integer k ∈ N,

P
[
H = k

]
=

∫ ∞

0
(1 + λ)e−(1+λ)x ·

(
(N − 1)(1 + λ) · x

)k · e−(N−1)(1+λ)·x

k!
=

(
N − 1

N

)k 1

N
.

Thus, the number of arrivals H follows a geometric distribution with a success probability of 1
N .

From Lemma C.12, we have

P
[
H < N δ

]
≤ N δ

N
=

1

N1−δ
. (70)

Step Two: Bounding the Shared Pool Queue Lengths from Above Secondly, we show that
with a high probability, the shared pools in both systems are not extremely long at time h(τ).

First, since server one and system one do not interact, Q̄0

(
h(τ)

) d
= Q̄0(∞). Therefore, from

Lemma A.3 we have

P
(
Q̄0

(
h(τ)

)
>

1

4
(1− ϕ)gN δ

)
≤ c6(λ, ϕ) · exp

(
− α3(λ, ϕ) ·N δ

)
(71)

for some constants c6(λ, ϕ) and α3(λ, ϕ) that depend only on the values of λ and ϕ.
Secondly, let Q̃1(∞) and S̃1(∞) denote the number of jobs and tokens at server one in the

stationary distribution of in system two and P[Ỹ1(∞) = 1] the stationary rate of offering help by
server one in system two. Note that

min

{
1,

λ

ϕ

}
· P
(
Q̃1(∞) = 0, S̃1(∞) ≤ C − 1

)
= P[Ỹ1(∞) = 1] ≥ g′ > 0

for some constant g′ > 0 and any value C of token-amount upper bound. In the above, the equality
follows from the fact that a server requests help only when its queue is empty and token amount is

smaller than C, and in such instances requests help with a probability of min
{
1, λϕ

}
; the existence

of the positive constant g′ follows from Lemma 6.2 Bullet 3 (for a more detailed explanation, see
the paragraph of “Validity of Lemma A.3” in Appendix C.3.1, especially the way we argue g > 0
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there). Thus, for any integer n ∈ N, we have

P
(
Q̃0

(
h(τ)

)
> n

)
= P

(
Q̃0(∞) > n

∣∣∣server one will offer help when a capacity unit arrives
)

= P
(
Q̃0(∞) > n

∣∣∣Q̃1(∞) = 0, S̃1(∞) ≤ C − 1
)

≤ 1

g
· P
(
Q̃0(∞) > n

)
with constant g ≜ g′/min

{
1, λϕ

}
> 0. Therefore, again from Lemma A.3 we have

P
(
Q̃0

(
h(τ)

)
>

1

4
(1− ϕ)gN δ

)
≤ c7(λ, ϕ) · exp

(
− α4(λ, ϕ) ·N δ

)
(72)

for some constants c7(λ, ϕ) and α4(λ, ϕ) that depend only on the values of λ and ϕ.

Step Three: A Drift Analysis We first define a “good” event A with

A ≜
{
H ≥ N δ

}
∩
{
∩ℓ≤Nδ Eℓ

}
∩
{
Q̄0

(
h(τ)

)
≤ 1

4
(1− ϕ)gN δ

}
∩
{
Q̃0

(
h(τ)

)
≤ 1

4
(1− ϕ)gN δ

}
,

where event Eℓ is defined in Appendix C.5.5. From (64), (70) - (72), and the union bound, we have

P
(
Ac
)
≤ c8(λ, ϕ, δ)

N1−δ
(73)

for some constant c8(λ, ϕ, δ) that depends only on the values of λ, ϕ, and δ.
Following the same drift analysis as in Step three of Appendix C.5.5, we have

P
[
T1 − h(τ) ≥ τ − h(τ)

∣∣∣A] ≤ exp

(
− 1

32
(1− ϕ)2g2N δ

)
, (74)

and

P
[
T2 − h(τ) ≥ τ − h(τ)

∣∣∣A] ≤ exp

(
− 1

32
(1− ϕ)2g2N δ

)
, (75)

which are counterparts to (68). Thus, from (73) - (75) we have

P
[
T − h(τ) ≥ τ − h(τ)

]
≤ P

(
A
)
· P
[
T − h(τ) ≥ τ − h(τ)

∣∣∣A]+ P
(
Ac
)

≤ P
(
A
)
·
(
P
[
T1 − h(τ) ≥ τ − h(τ)

∣∣∣A]+ P
[
T2 − h(τ) ≥ τ − h(τ)

∣∣∣A])+ P
(
Ac
)

≤ c2(λ, ϕ, δ)

N1−δ

for some constant c2(λ, ϕ, δ) that depends only on the values of λ, ϕ, and δ. Combining the above
with (69) yields the desired result.

C.6 Proof of Theorem 7.2

Proof of Bullet One Suppose all servers follow the FMFE strategy πF. Then, the dynamics
of the queue length of the shared pool is an M/M/1 queue with a utilization factor of ϕ = ρ̄.
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Therefore, the long-run average waiting time in the shared pool, denoted by w, is w = ρ̄
1−ρ̄ ·

1∑
i∈[N ] λi

.

Consequently, the time-average waiting cost for jobs in the shared pool that come from server one

is λ1w ≤ λ̄ρ̄
λ(1−ρ̄)·N .

Additionally, every server i contributes its capacity units to the shared pool at a rate of µi·ρi/ρ̄ =
λi/ρ̄. Since the job processing costs are distributed among servers proportional to the rate of
capacity units a server contributes to the shared pool, the time-average job processing cost of
server one is cλ1.

Proof of Bullet Two The proof mimics the proof of Lemma 6.5 (Appendix C.5). Note that
because the token-earning probability ϕ equals ρ̄, Lemma C.9 in Appendix C.5 is simplified to be

P[Q̄0(∞) ≥ 1] = ϕ = ρ̄.

This is because the dynamics of the shared pool’s queue length Q̄0(∞) is an M/M/1 queue with a
utilization factor of ϕ = ρ̄.

D Problem of Server One in the Small Market Analysis

In this section, we formulate the problem of server one (i.e., the deviating server) in Section 6.3.
Recall that we relax the problem by providing server one additional advantage to obtain a tractable
optimization problem. First, we enable server one to have complete information about the shared
pool so that server one can make decisions based on its queue length. Additionally, we bound the
waiting time in the shared pool from below by q0+1

N , where q0 denotes the queue length of the
shared pool at the current time.

After the relaxation, server one’s optimal strategy depends only on two state variables—server
one’s queue length (denoted by q1) and the queue length of the shared pool (denoted by q0), and
can be formulated as a two-dimensional dynamic program that is easy to solve. To describe the
problem, we consider an equivalent embedded discrete-time model of server one’s problem, where
in each period, a job or a capacity unit arrives at either server one or the shared pool.

Case One: With probability p1 = (N−1)λ
N(1+λ) , a job arrives at the shared pool; consequently, the

shared pool’s queue length q0 increases by one. In this case, since server one does not request help
before the job arrives at the pool, it will not do so after the arrival.

Case Two: With probability p2 = N−1
N(1+λ) , a capacity unit arrives at the shared pool. If the

shared pool is empty, the capacity unit is wasted. In this case, since there is no change in the
queue length of either server one or the shared pool, server one would not request help (otherwise,
it would do so before the capacity unit arrives). Alternatively, if the shared pool is non-empty, one
job is served from the shared pool; hence, the shared pool’s queue length reduces by one. In this
case, server one decides whether to relocate a job from its queue (if there is any) to the shared pool
by requesting help. We remark that server one would request help for at most one job, because if
server one would like to request help for a second job, it would rather request help for a job before
the arrival of the capacity unit; however, this does not hold true.

Case Three: With probability p3 = λ
N(1+λ) , a job arrives at server one. In this case, server

one needs to decide whether to add the job to its queue or relocate the job to the shared pool
by requesting help. Analogously, if server one requests help, it would request help only for the
incoming job. This is because if server one would like to request help for a second job, it would
rather request help for a job before the new job arrives (however, this does not hold true).
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Case Four: With probability p4 = 1
N(1+λ) , a capacity unit arrives at server one. In this case,

server one needs to decide whether to (i) process a job from its queue (if one is present), (ii) offer
help to the shared pool, or (iii) simply waste the unit and be idle. We remark that if server one
offers help to the shared pool, the cost depends on the state of the shared pool. Specifically, server
one experiences a cost of c from processing a job from the shared pool if the pool is non-empty and
a cost of zero if the pool is empty (because server one does not process a job). Nevertheless, server
one obtains a token with probability ϕ regardless in both scenarios. We also remark that server
one might serve a job from the shared pool and then request help immediately (because the shared
pool’s queue length reduces after server one serves a job). However, this is never optimal because
server one can be better off serving a job from its queue instead.14

The two-dimensional DP problem can be solved by a linear program (76). In (76), p(q1, q0)
represents the stationary probability that the system state is (q1, q0)—i.e., server one has q1 jobs
and the shared pool has q0 jobs, p2(q1, q0) the joint probability that the system state is (q1, q0), a
capacity unit arrives at the shared pool, and server one requests help for a job, p3(q1, q0, 0) and
p3(q1, q0, 1) the joint probability that the system state is (q1, q0), a job arrives at server one, and
server one adds the job to its queue or requests help for the job, respectively, and p4(q1, q0, 0) and
p4(q1, q0, 1) the joint probability that the system state is (q1, q0), a capacity unit arrives at server
one, and server one serves a job from its queue or offers help to the shared pool, respectively.

Thus, in (76), the decision variables are the stationary distribution of state-action pairs, the
objective is to minimize server one’s total cost in the stationary distribution, and constraints are
the flow balance constraint of the tokens, i.e., the constraint that the the expected rates of earning
and spending tokens are equal (the first constraint), and balance equations that characterize the
dynamics of the states (q1, q0) (the rest constraints).

V OPT = max
p(q1,q0),p2(q1,q0),

p3(q1,q0,0),p3(q1,q0,1),
p4(q1,q0,0),p4(q1,q0,1)

N(1 + λ) ·
∑

q1,q0≥0

{
p(q1, q0) ·

q1
N(1 + λ)

+
(
p2(q1, q0) + p3(q1, q0, 1)

)
· q0 + 1

N

+ c ·
(
p4(q1, q0, 0) + p4(q1, q0, 1) · 1[q0 ≥ 1]

)}
s.t.

∑
q1,q0≥0

(
p2(q1, q0) + p3(q1, q0, 1)

)
= ϕ ·

∑
q1,q0≥0

p4(q1, q0, 1), (76)

p(q1, q0) = p1 · p(q1, q0 − 1) · 1[q0 ≥ 1] + p2(q1 + 1, q0)

+
(
p2 · p(q1, q0 + 1)− p2(q1, q0 + 1)

)
+ p2 · p(q1, q0) · 1[q0 = 0]

+ p3(q1 − 1, q0, 0) · 1[q1 ≥ 1] + p3(q1, q0 − 1, 1) · 1[q0 ≥ 1]

+ p4(q1 + 1, q0, 0) + p4(q1, q0 + 1, 1) + p4(q1, q0, 1) · 1[q0 = 0]

+
(
p4 · p(q1, q0)− p4(q1, q0, 0)− p4(q1, q0, 1)

)
, ∀ q1, q0 ≥ 0,∑

q1,q0≥0

p(q1, q0) = 1,

p2(q1, q0) ≤ p2 · p(q1, q0), ∀ q1, q0 ≥ 0,

p3(q1, q0, 0) + p3(q1, q0, 1) = p3 · p(q1, q0), ∀ q1, q0 ≥ 0,

p4(q1, q0, 0) + p4(q1, q0, 1) ≤ p4 · p(q1, q0), ∀ q1, q0 ≥ 0,

p2(q1, q0) = 0, ∀ q1 = 0, q0 ≥ 0,

14By doing this, the job can get served immediately rather than waiting till being served in the shared pool.
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p2(q1, q0) = 0, ∀ q0 ≥ 0, q1 = 0,

p4(q1, q0, 0) = 0, ∀ q1 = 0, q0 ≥ 0,

p(q1, q0), p2(q1, q0), p3(q1, q0, 0), p3(q1, q0, 1) ≥ 0, ∀ q1, q0 ≥ 0,

p4(q1, q0, 0), p4(q1, q0, 1) ≥ 0, ∀ q1, q0 ≥ 0.
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